
NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 1

Frequency learning for structured CNN
filters with Gaussian fractional
derivatives
Nikhil Saldanha,
Silvia L. Pintea,
Jan C. van Gemert,
Nergis Tomen

Computer Vision Lab,
Delft University of Technology,
Delft, Netherlands

Abstract
Frequency information lies at the base of discriminating between textures,

and therefore between different objects. Classical CNN architectures limit the
frequency learning through fixed filter sizes, and lack a way of explicitly con-
trolling it. Here, we build on the structured receptive field filters with Gaussian
derivative basis. Yet, rather than using predetermined derivative orders, which
typically result in fixed frequency responses for the basis functions, we learn
these. We show that by learning the order of the basis we can accurately learn
the frequency of the filters, and hence adapt to the optimal frequencies for the
underlying learning task. We investigate the well-founded mathematical for-
mulation of fractional derivatives to adapt the filter frequencies during training.
Our formulation leads to parameter savings and data efficiency when compared
to the standard CNNs and the Gaussian derivative CNN filter networks that we
build upon.

1 Introduction

Figure 1: Filter responses when using frac-
tional order Gaussian derivative filters (here
x-order and y-order are equal). Defining the
filters using fractional derivative orders adds
flexibility in terms of the peak response fre-
quency, and enables the use of standard gradi-
ent backpropagation for training.

The world comes in many frequencies,
and we rely on frequency as encoded
in texture to differentiate between dif-
ferent object types: a purple thistle
flower versus a purple tulip flower.
What’s more, convolutional neural net-
works (CNNs) additionally use texture
(e.g. ‘fur’ versus ‘skin’) for discrimi-
nating between dissimilar object cate-
gories [6]. Therefore, CNNs can reap
benefits from an explicit lever for con-
trolling the frequencies extracted from
the data.

Current acclaimed CNNs architec-
tures [11, 33, 36, 37] lack an explicit

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

ar
X

iv
:2

11
1.

06
66

0v
1

 [
cs

.C
V

]
 1

2
N

ov
 2

02
1

Citation
Citation
{Geirhos, Rubisch, Michaelis, Bethge, Wichmann, and Brendel} 2019

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2016

Citation
Citation
{Tan and Le} 2019

2 NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

knob to control the frequencies learned from the data. These classical CNN archi-
tectures hard-code the filter sizes thus limiting the frequency resolution contained
in the filters. Moreover, they learn each filter value separately at each featuremap
location by treating the weights as independent, leading to data inefficiency. Here,
we address both these issues, by proposing a way to explicitly control the frequency
learning in a data-efficient continuous formulation using structured receptive fields
with Gaussian basis.

We make the observation that the order of the Gaussian basis in the struc-
tured receptive fields (SRFs) [16] explicitly controls the maximum frequency of
the filters, and therefore the maximum frequencies they can detect in the data. We,
additionally, observe that when using SRFs [16], typically a few Gaussian basis
functions are sufficient to extract useful information. However, while it may be
adequate to use a single basis function out of the whole basis to define each kernel,
selecting from a large range of derivative orders may be necessary. Putting together
these observations, we aim to learn a single Gaussian derivative per kernel where
the order of the Gaussian derivative is adapted during training to better represent
the frequencies present in the data. Typically, the derivative order is an integer (e.g.
first order derivative or second order derivative) which makes backpropagation dif-
ficult. However, the order of the Gaussian derivatives become differentiable when
working within the domain of fractional calculus. In this work, we make use of the
fractional derivatives of the Gaussian function to learn the derivative order. Fig. 1
shows examples of image responses when using fractional order Gaussian deriva-
tives. Fractional orders add flexibility in terms of the frequencies that the model
can encode and make the model easily trainable using standard gradient backprop-
agation methods.

This article makes the following contributions: (i) We propose a well-founded
method for learning the filter frequencies from data, and demonstrate its effective-
ness experimentally; (ii) To that end, we describe a mathematically solid approach
to learning fractional order Gaussian derivatives; (iii) We demonstrate improved
data efficiency and parameter savings across 4 datasets when comparing with ex-
isting standard CNNs and baselines with structured CNN filters.

2 Related Work

Structured filters in CNNs. Influential prior work has investigated the usefulness
of structured filters for image analysis. Simoncelli et al. [32] define a steerbale
pyramid using a set of wavelets that encode orientation and scale, while Mallat
defines complex wavelet basis filters in [24]. These complex wavelets have been
used in the Scattering transform [1, 25] which is later extended in [5, 27, 31, 34].
Other works consider PCA basis [7], Gabors [22, 28], circular harmonics [43],
or simply learning the basis from the data [18]. A large amount of work has
been focused on Gaussian derivatives basis [16] used for controlling the scale in
deep networks [21, 29, 35] or for making the networks continuous over space and
depth [39]. Here, we also build on the Gaussian derivative basis [16] because it
allows us to easily control the number of learnable parameters by directly learning
the order of the Gaussian derivative basis. The order parameter controls the com-
plexity of the patterns the filters can respond to, therefore by learning the order we

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Simoncelli, Freeman, Adelson, and Heeger} 1992

Citation
Citation
{Mallat} 1999

Citation
Citation
{Bruna and Mallat} 2013

Citation
Citation
{Mallat} 2012

Citation
Citation
{Cotter and Kingsbury} 2017

Citation
Citation
{Oyallon, Belilovsky, and Zagoruyko} 2017

Citation
Citation
{Sifre and Mallat} 2013

Citation
Citation
{Singh and Kingsbury} 2017

Citation
Citation
{Ghiasi and Fowlkes} 2016

Citation
Citation
{Luan, Chen, Zhang, Han, and Liu} 2018

Citation
Citation
{P{é}rez, Alfarra, Jeanneret, Bibi, Thabet, Ghanem, and Arbel{á}ez} 2020

Citation
Citation
{Worrall, Garbin, Turmukhambetov, and Brostow} 2017

Citation
Citation
{Li, Gu, Gool, and Timofte} 2019

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Lindeberg} 2020

Citation
Citation
{Pintea, Tomen, Goes, Loog, and van Gemert} 2021

Citation
Citation
{Sosnovik, Szmaja, and Smeulders} 2020

Citation
Citation
{Tomen, Pintea, and van Gemert} 2021

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 3

learn how complex these filters need to be. While wavelets, such as Gabor filters,
can directly learn the frequency response of the filters, the frequency parameter of
the wavelet is coupled to its scale which relates to its spatial extent. Our represen-
tation decouples the frequency response and the scale/spatial extent of the filters,
via two independently trained parameters: derivative order and scale-parameter σ .
Parameter efficiency and data efficiency in CNNs. CNNs come with large com-
putational costs entailed by the large number of parameters to be learned on the
training data. A new trend is emerging with focus on efficiency. Model com-
pression has been the most intuitive manner of reducing computations and mem-
ory [10, 12, 45]. Alternatively, the use of 1× 1 convolutions have significantly
reduced the parameters in SqueezeNets [8, 15]. Depthwise separable convolutions
combined with 1×1 convolutions have shown parameter efficiency [3, 13, 23, 47].
More recently EfficientNet [37] shows both accuracy improvement and parameter
reduction by carefully scaling network width, depth and resolution. Similarly, here
we also propose a model aimed at reduced parameters by learning how complex the
filters need to be. Moreover, our proposed fractional structured filters can be used
in combination with any efficient convolutional architecture.
Frequency learning in CNNs. Analyzing the deep networks in frequency domain
has brought insights into how they work. Deep networks can fit, barely perceiv-
able, high-frequency signals, thus leading to vulnerability to adversarial attacks
[38, 40, 46]. However they tend to learn low frequency signals first [30]. Rather
than using frequency domain to analyze deep networks, the networks can actually
be trained in the frequency domain [9, 41] or over inputs transformed to the fre-
quency domain [44]. Here, we also analyze which frequencies our model can fit
well and where it makes errors. Our proposal learns the appropriate frequency of
the filters by learning the order of the Gaussian basis.

3 Fractional structured filters

3.1 Review of Gaussian basis filters
Rather than representing filters as a discrete set of pixel values, the use of Scale-
space theory [20, 42] enables the definition of filters as continuous functions [16,
35, 39]. And instead of learning the values of the individual pixels, one only needs
to learn the parameters of these functions. The underlying idea is that a filter F(x)
can be approximated with a Taylor expansion around a point a, up to an order N:

F(x)≈
N

∑
i=0

F i(a)
i!

(x−a)i. (1)

Scale-space theory [20, 42] defines the filter derivatives F i as the convolution (∗)
of the filter F with Gaussian derivatives, Gi:

F(x)≈
N

∑
i=0

(Gi(.;σ)∗F)(a)
i!

(x−a)i (2)

where σ is the standard deviation of the Gaussian representing the scale parameter
[20]. The recursive formulation relying on Hermite polynomials [26] allows to

Citation
Citation
{Han, Mao, and Dally} 2016

Citation
Citation
{He, Lin, Liu, Wang, Li, and Han} 2018

Citation
Citation
{Yang, Howard, Chen, Zhang, Go, Sandler, Sze, and Adam} 2018

Citation
Citation
{Gholami, Kwon, Wu, Tai, Yue, Jin, Zhao, and Keutzer} 2018

Citation
Citation
{Iandola, Han, Moskewicz, Ashraf, Dally, and Keutzer} 2016

Citation
Citation
{Chollet} 2017

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Ma, Zhang, Zheng, and Sun} 2018

Citation
Citation
{Zhang, Zhou, Lin, and Sun} 2018

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{Tomen and van Gemert} 2021

Citation
Citation
{Wang, Wu, Huang, and Xing} 2020

Citation
Citation
{Yin, Lopes, Shlens, Cubuk, and Gilmer} 2019

Citation
Citation
{Rahaman, Baratin, Arpit, Draxler, Lin, Hamprecht, Bengio, and Courville} 2019

Citation
Citation
{Goldberg, Shapiro, Richardson, and Avidan} 2020

Citation
Citation
{Watanabe and Wolf} 2020

Citation
Citation
{Xu, Qin, Sun, Wang, Chen, and Ren} 2020

Citation
Citation
{Lindeberg} 2013

Citation
Citation
{Witkin} 1987

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Sosnovik, Szmaja, and Smeulders} 2020

Citation
Citation
{Tomen, Pintea, and van Gemert} 2021

Citation
Citation
{Lindeberg} 2013

Citation
Citation
{Witkin} 1987

Citation
Citation
{Lindeberg} 2013

Citation
Citation
{Martens} 1990

4 NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

Figure 2: Top: Gaussian derivatives computed using Caputo-Fabrizio [2] fractional deriva-
tive form. Bottom: Fractional Gaussian derivatives computed via interpolation between in-
teger orders. The error introduced by using the interpolation is small relative to the Caputo-
Fabrizio form.

effectively compute the ith Gaussian derivative Gi as a point-wise multiplication
(◦) between the Gaussian G and the ith Hermite polynomial, Hi:

Gi(x;σ) =

(
−1

σ
√

2

)i

Hi

(
x

σ
√

2

)
◦G(x;σ), (3)

where the recursive definition of the Hermite polynomials is: H0(x) = 1; H1(x) =
2x; Hi(x) = 2xHi−1(x)−2(i−1)Hi−2(x).

By simplifying Eq. (2) and incorporating the polynomial coefficients in a set
of weights α , previous work [16, 39] defines the filter approximation F as a linear
combination of Gaussian derivatives up to order N:

F(x,σ)≈
N

∑
i=0

αiGi(x;σ), (4)

where both the weights α and the scale parameter σ are can be learned from data
[29, 39].

3.2 Fractional structured filters: Learning the basis order
We propose to learn the frequency of the filters by making the order of the Gaussian
basis a learnable parameter. Instead of defining the filter as a linear combination
of Gaussian derivatives up to order N, as previously done [16], we approximate the
filter with only one weighted Gaussian derivative, where the order of the derivative
ν is a learnable parameter:

F(x;σ)≈ αGν(x;σ). (5)

When using this filter definition in a deep network, we can obtain the gradients of
the loss function with respect to ν through the standard network backpropagation.
One caveat of learning the order of the Gaussian derivative is that a gradient de-
scent step will always result in real (fractional) order updates. Since the Gaussian
derivatives are traditionally only defined for integer orders, we need to account for
orders in between two integers.

One possible way of dealing with fractional derivatives is the Caputo-Fabrizio
[2] form, which in the 1D case is:

Gν
CF(x;σ) =

1
1−ν

· 1√
2πσ3

exp
(
− 1

1−ν

(
x− σ2

2
· 1

1−ν

))
ζσ ,ν(x) (6)

Citation
Citation
{Caputo and Fabrizio} 2015

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Tomen, Pintea, and van Gemert} 2021

Citation
Citation
{Pintea, Tomen, Goes, Loog, and van Gemert} 2021

Citation
Citation
{Tomen, Pintea, and van Gemert} 2021

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Caputo and Fabrizio} 2015

NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 5

0 5 10 15 20 25 30 35 40 45

Channels

0
1

2
3

4
5

6
7

8
9G
a
u
ss

ia
n
 B

a
si

s
Fu

n
ct

io
n
s

SRF-NiN

0 5 10 15 20 25 30 35 40 45

Channels

0
1

2
3

4
5

6
7

8
9G
a
u
ss

ia
n
 B

a
si

s
Fu

n
ct

io
n
s

Entropy Min. SRF-NiN

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0 20 40 60 80

Steps

30

40

50

60

70

80

90

To
p
-1

 A
cc

u
ra

cy

SRF-NiN

0 20 40 60 80

Steps

Entropy Min. SRF-NiN

train
test

(a) (b) (c)
Figure 3: (a) The distribution of α weights (color bar) learned in a layer of the original SRF-
NiN [16] model on CIFAR-10. (b) The distribution of α-s when minimizing their entropy.
(c) Training/test accuracies for the original SRF-NiN and the entropy-minimized version.
We can safely reduce the number of Gaussian derivatives defining the filters (i.e. set most
basis coefficients α to zero), at no cost to validation accuracy.

where ζσ ,ν(x) is an integral of the form:

ζσ ,ν(x) =
∫ t

0
(µ− x)exp

(
−
(
τ + 1

1−ν
σ2
)2

2σ2

)
dτ (7)

However, when using this formulation, we observed exploding gradients due to the
non-linear terms. A more straight-forward approach is to interpolate between the
two closest integers of the fractional order:

Gν
Iter(x;σ) = (dνe−ν)Gbνc(x;σ)+(ν−bνc)Gdνe(x;σ), (8)

where d·e and b·c are the ceil and floor roundings of ν . This formulation permits
us to keep the gradients in check, due to linear nature of interpolation used. Fig. 2
shows a number of fractional order Gaussian derivatives when going from order 0
to 1, 1 to 2, 2 to 3, and 3 to 4. On the top row the Caputo-Fabrizio form (Eq. (6)) is
used for computing the 1D derivatives, while on the bottom row the interpolation
method (Eq. (8)) for estimating fractional Gaussian derivatives. There is on average
less than 0.22 root mean squared error between these two estimations. In all our
experiments we use the linearly interpolation method to compute the fractional
Gaussian derivatives.

Because we are working with images, we use 2D Gaussian derivatives. The
outer product (⊗) of 1D Gaussian derivatives along the x- and y-direction defines
the 2D Gaussian derivative: Gi+ j(x,y;σ) = Gi(x;σ)⊗G j(y;σ).

3.3 Deep networks with fractional structured filters
Each 2D Gaussian derivative requires two order parameters: the order on the x-axis,
νx, and the order on the y-axis, νy. When considering a filter F of size [C,K,W,H]
with C input channels and K output channels, we learn in practice two order pa-
rameters (νx

ck, ν
y
ck) per kernel in the filter, and a scalar (αck) for each kernel:

F(c,k,x,y;σ) = αck(Gνx
ck(x;σ)⊗Gν

y
ck(y;σ)), (9)

where the scale parameter σ is shared among the kernels in the filter and can either
be learned as in [29, 39], or fixed as in [16, 35]. Our method is more flexible than
the structured receptive fields (SRF) [16], allowing for non-integer derivatives. We
coin our filters FracSRF.

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Pintea, Tomen, Goes, Loog, and van Gemert} 2021

Citation
Citation
{Tomen, Pintea, and van Gemert} 2021

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Sosnovik, Szmaja, and Smeulders} 2020

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

6 NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

Is one Gaussian derivative sufficient? Unlike previous work [16, 39], we do not
use a linear combination of Gaussian derivatives up to a fixed order. We use a
single Gaussian derivative, whose order can be learned. To check whether using a
single Gaussian derivative is sufficient, we do a small test on the CIFAR-10 dataset,
using SRF filters [16] over a NiN [19] backbone. In the SRF model the α weights
control how much a certain integer-order Gaussian derivative contributes to the final
filter. Fig. 3.(a) shows the distribution of the α-s in a layer of the original SRF-NiN
model, compared to the same model in Fig. 3.(b) where we normalize the α values
and we minimize their entropy. Minimizing the entropy of α-s reduces the actual
number of Gaussian derivatives used per filter. At no loss in accuracy (Fig. 3.(c))
the number of Gaussian derivatives can be reduced from 9 to 2 per channel. This
supports our intuition that using one Gaussian derivative is sufficient, where we
make it more flexible by learning its order from the data.

4 Experiments

4.1 Experimental setup

Datasets. We test our method across 4 datasets: CIFAR-10, CIFAR-100 [17], and
STL-10 [4] and ImageNette [14], having low and high resolution images, respec-
tively. Additionally, to test the method’s ability to learn the correct data frequency,
we created a dataset called Sinusoids containing 2D sinusoids of various orienta-
tions and 5 spatial frequencies defining the 5 classes. We also test our method’s
accuracy in few-data samples regime by sub-sampling the CIFAR-10 dataset be-
tween 40 and 0.04% of the original number of images.

Models. We consider several backbone architectures: Network in Network (NiN)
[19], Resnet-32 [11], EfficientNet-b0 [37]. We also compare with a few methods
using structured filters: SRF [16, 29]. To obtain the SRF and our FracSRF variants,
we replace all the non 1×1 convolutional layers either with SRF layers or with
FracSRF layers. For the SRF networks, we always set the Gaussian basis orders to
2. For our models we initialization of the orders uniformly between [1,6], set the
spatial filter extent to 2σ around the center and initialize σ = 1, unless stated other-
wise. We train using SGD with momentum of 0.9 and L2 regularization of 5e-4. For
FracSRF-NiN, FracSRF-Resnet32, FracSRF-Efficientnetb0 we use a learning rate
of 0.1, 0.05, 0.001 and batch sizes of 128, 256, and 16. When enabling σ learning
in FracSRF, we use a different learning rate and weight decay for σ of 0.001 and
0.01 on FracSRF-Resnet-32, while on FracSRF-EfficientNet-b0 we use 0.001 and
0.05 for σ learning. We keep learning rates and batch sizes fixed across datasets
except for FracSRF-Efficientnet-b0 on STL-10 where due to memory limitations,
we use a batch size of 4 and learning rate proportionally increased to 0.05. For the
baselines NiN, Resnet-32 and EfficientNet-b0 we use learning rates of 0.1, 0.01,
0.01 and batch sizes of 128, 128 and 16, respectively. Given the relatively small
dataset sizes, we use the lightweight version of Resnet-32 where the first block has
16 channels and the last block 64. For the SRF-NiN, SRF-Resnet-32 and SRF-
EfficientNet-b0 we use learning rates of of 0.1, 0.05, 0.001 and batch sizes of 128,
256, and 16 respectively.

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Tomen, Pintea, and van Gemert} 2021

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Lin, Chen, and Yan} 2013

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Coates, Ng, and Lee} 2011

Citation
Citation
{Howard and Gugger} 2020

Citation
Citation
{Lin, Chen, and Yan} 2013

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Pintea, Tomen, Goes, Loog, and van Gemert} 2021

NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 7

Accuracy Precision Recall
0.0

0.2

0.4

0.6

0.8

1.0

S
co

re
s

Frac SRF CNN SRF

(a) Sinusoids dataset (b) Sinusoids scores
Figure 4: Exp 1: (a) Examples from the toy Sinusoids dataset. We vary the number of
frequencies and the orientations. (b) Accuracy / Precision / Recall results on the Sinusoids
dataset. For a baseline CNN, its SRF equivalent, and FracSRF. Our FracSRF is more suitable
for learning varying frequencies.

0 1 2 3 4

Predicted Labels

0
1

2
3

4
A
ct

u
a
l L

a
b
e
ls

0.67 0.33 0 0 0

0.4 0.54 0.062 0 0

0.045 0.097 0.53 0.33 0

0 0 0.052 0.65 0.29

0 0 0.02 0.17 0.81

CNN

0 1 2 3 4

Predicted Labels

0
1

2
3

4
A
ct

u
a
l L

a
b
e
ls

0.48 0.52 0 0 0

0 0.99 0.0075 0 0

0 0 0.99 0.005 0

0 0 0.022 0.98 0

0.13 0.058 0 0.81 0

SRF

0 1 2 3 4

Predicted Labels

0
1

2
3

4
A
ct

u
a
l L

a
b
e
ls

0.91 0.089 0.001 0 0

0.041 0.95 0.011 0 0

0 0.021 0.98 0.001 0

0 0 0.11 0.86 0.035

0 0 0.008 0.11 0.88

Frac-SRF

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Exp 1: Confusion matrices for the CNN, SRF [16], and FracSRF small networks
on the Sinusoids dataset. Our FracSRF can learn varying frequencies, and therefore it is
better at distinguishing the 5 classes.

4.2 Exp 1: Does FracSRF learn the correct data frequency?

We test the hypothesis that our FracSRF is more flexible in learning a large range
of frequencies, by learning the Gaussian derivative order. For this we create a
synthetic toy dataset coined the Sinusoids dataset. Fig. 4.(a) shows a few examples
from this dataset. The dataset contains 5 classes, each with 600 training examples
and 200 test examples. Each class corresponds to a different frequency, where we
vary the orientations of the sinusoids across examples. For this experiment we use
a small 2-layer network where the first layer has 32 output channels and the second
5 output channels. We repeated the experiments 5×. For the normal CNN we
learn the filters the traditional way, for the SRF we replace the filters with a linear
combination of Gaussian derivatives as in [16] with σ = 1, and for FracSRF we use
a single weighted Gaussian derivative with σ = 1. All filters are 5×5 px.

Fig. 5 shows confusion matrices for the CNN, SRF [16] and FracSRF 2-layer
networks on the Sinusoids dataset. Fig. 4.(b) reports accuracy, precision and recall
scores for these three methods. SRF cannot predict the highest frequency classes,
being limited by its fixed order in the Gaussian basis. The CNN is not able to
resolve between similar frequencies and tends to confuse neighboring classes. Our
FracSRF can learn the varying frequencies and therefore is able to better separate
the 5 frequency classes.

4.3 Exp 2: Model choices analysis

Exp 2.(a): Impact of scale initialization. We test the effect of the initialization of
the scale parameter (σ) of the Gaussian derivatives, in our FracSRF filters. Follow-

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

8 NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

Filter scale initialization

σ = 2−2 σ = 2−1 σ = 2−0 σ = 21 σ = 22

Top-1 Accuracy (%) 90.59±0.2 90.65±0.04 90.90±0.05 90.68±0.25 90.26±0.29
Initial Filter Size 3×3 5×5 7×7 9×9 11×11
Training Time (sec/epoch) 79.2s 79.2s 79.8s 79.2s 81.0s

Table 1: Exp 2.(a): Impact of initializing the filter scale on the performance and training
time of the FracSRF-NiN on CIFAR-10. The network can adapt the scale parameter σ even
when initialized far from the optimum. The best initialization seems to be σ = 20.

Filter order initialization

order ∈ U[1,3] order ∈ U[3,6] order ∈ U[6,10]

Top-1 Accuracy (%) 90.62±0.20 90.34±0.12 89.52±0.13
Training Time (sec/epoch) 74.4s 74.5s 79.2s

Table 2: Exp 2.(b): Impact of order initialization on CIFAR-10 using FracSRF-NiN. There
is not a large difference in performance between different order ranges used for initializa-
tion. The model can learn to adapt the order to the best one. Higher orders require more
computations.

ing [39] we learn the σ and initialize it as a power of 2, which avoids dealing with
negative σ gradients during training. And we initialize the order uniformly in [1,6].
Table 1 shows results across 3 repetitions when varying σ for the FracSRF-NiN on
CIFAR-10. The initialization of the scale parameter shows minors variations, with
σ = 20 being the best. The network can correct for the scale well even when ini-
tialized far away from the optimum. Additionally, using larger scales impacts the
training time.
Exp 2.(b): Impact of order initialization. We test the effect of initializing the
Gaussian derivative order on the CIFAR-10 dataset using FracSRF-NiN. We vary
the initialization of the order by uniformly sampling in the ranges: [1,3], [3,6], and
[6,10]. We repeated the experiments 3×. Table 2 shows the optimal order initial-
ization is found in the interval [1,3]. There is not a large difference between the dif-
ferent initialization ranges, suggesting that the model can learn the correct orders
for task. Starting from larger order range is sub-optimal as the training time in-
creases: the Hermite polynomial computations requires more time at higher orders.
CIFAR-10 does not contain many high frequencies and therefore it is reasonable
that orders up to 3 are able to capture the information.

4.4 Exp 3: FracSRF performance analysis

Exp 3.(a): Accuracy in few-samples regime. We test our method in the few-
training samples regime. We train on different sub-sets of the CIFAR-10 dataset and
evaluate on the full test set. We compare our FracSRF-NiN with the baseline NiN
and other models using structured filters such as the SRF-NiN [16], which also have
been shown to generalize well with few training examples. Fig. 6 shows the relative
accuracy of each model as a percentage of its own top-1 accuracy when trained with
100% of the data: therefore all models start at 100% and scores decrease with the
decrease in training samples. We also indicate through the dot size in the plot the
relative number of parameters of each model. Our FracSRF has the smallest number
of parameters. This plot shows the expected degradation of the performance of the

Citation
Citation
{Tomen, Pintea, and van Gemert} 2021

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 9

10 1100101102

Percentage of the Training samples used(log scale)

20

40

60

80

100

R
e
la

ti
ve

 A
cc

u
ra

cy

Frac SRF

NiN

SRF

Figure 6: Exp 3.(a): Data efficiency in the FracSRF model. Relative accuracy of NiN,
SRF-NiN [16, 29], and FracSRF-NiN on subsets of CIFAR-10. The dot size of each method
indicates the relative number of parameters. The performance of each model are normalized
as a percentage of their own accuracy at 100% training data. The scores of our FracSRF-NiN
degrade less rapidly especially when compared to NiN and SRF-NiN.

networks as training data decreases. The scores of our FracSRF-NiN degrade less
rapidly, especially when compared to the SRF-NiN and the original NiN model.

Exp 3.(b): Accuracy versus parameter reduction. We test the accuracy ver-
sus parameter efficiency for our FracSRF models when compared to a set of base-
line CNNs and their SRF versions with fixed scale [16] and learned scale [29], on
CIFAR-10, CIFAR-100, STL-10 and ImageNette for the ResNet-32 backbone. Ta-
ble 3 reports accuracies and number of parameters. Our FracSRF layer achieves
comparable performance to standard convolutional networks, while reducing the
number of parameters 2 to 3 times on NiN and Resnet-32. On the EfficientNet-
b0 we do not see large parameter reductions because the model heavily relies on
1×1 convolutions which are not replaced with our FracSRF layers. On STL-10 our
model with learned σ and learned Gaussian derivative order consistently outper-
forms the other models. On the ImageNette dataset our method outperforms the
baseline SRF while reducing the number of parameters, as it does not limit the
maximum filter frequency. The STL-10 dataset contains high resolution images (96
× 96 px) allowing for higher frequencies to be present in the data. While the other
methods cannot adapt to varying data frequencies, our models learn this informa-
tion through the order parameter of the Gaussian derivatives.

5 Discussion
One of the limitations of our model is that computations increase with derivative
order, because we rely on the recursive Hermite polynomials to define the Gaussian
derivatives. However, while being computationally more expensive than standard
CNNs, we find that FracSRF models are 25% faster during training compared to
baseline SRF models (time estimates averaged over the complete training epochs)
which also rely on the Hermite polynomials. The training time speedup comes from
only computing 2 Gaussian derivative basis functions per filter.

Another limitation is that the scale learning is fairly unstable and it needs proper
regularization and careful learning rate selection. Additionally, we notice that the
orders have the tendency to go towards negative values, requiring clipping during
training. However, our model greatly reduces the number of parameters when com-
pared to standard 3×3 convolutional layers where instead of learning 9 parameters

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Pintea, Tomen, Goes, Loog, and van Gemert} 2021

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Pintea, Tomen, Goes, Loog, and van Gemert} 2021

10 NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

NiN [19] SRF FracSRF (ours)
Fixed scale [16] Learned scale [29] Fixed scale Learned scale

% Params (count) 100% (0.98M) 51% (0.5M) 53% (0.52M) 33% (0.33M) 35% (0.35M)
CIFAR-10 90.90% 85.30% 91.48% 86.60% 91.30%
CIFAR-100 67.80% 61.50% 68.30% 61.90% 67.80%
STL-10 80.13% 59.40% 70.00% 71.00% 77.75%

ResNet-32 [11] SRF-ResNet-32 FracSRF-ResNet-32 (ours)
Fixed scale [16] Learned scale [29] Fixed scale Learned scale

% Params (count) 100% (0.47M) 63% (0.30M) 65% (0.31M) 31% (0.15M) 34% (0.16M)
CIFAR-10 92.28% 88.33% 92.20% 87.99% 91.60%
CIFAR-100 67.90% 65.82% 67.61% 63.00% 67.50%
STL-10 72.30% 68.40% 70.30% 67.40% 72.00%
ImageNette 86.37% 78.57% 81.24% 80.23% 83.57%

EfficientNet-b0 [37] SRF-EfficientNet-b0 FracSRF-EfficientNet-b0 (ours)
Fixed scale [16] Learned scale [29] Fixed scale Learned scale

% Params (count) 100% (3.6M) 96% (3.47M) 96% (3.48M) 95% (3.43M) 95% (3.45M)
CIFAR-10 92.31% 89.37% 93.50% 84.50% 90.23%
CIFAR-100 76.20% 67.50% 75.81% 66.89% 72.50%
STL-10 73.20% 67.50% 71.78% 65.83% 71.81%

Table 3: Exp 3.(b): Classification accuracies versus number of parameters on CIFAR-10,
CIFAR-100, STL-10 and ImageNette datasets when comparing the baseline NiN, Resnet-
32 and EfficientNet-b0 with their SRF variants [16, 29] and our FracSRF variants. Our
method has comparable accuracy with the baselines while largely reducing the number of
parameters. On the high resolution, encoding more frequencies, STL-10 dataset our method
consistently outperforms the other models.

per kernel, it only needs to learn 3 parameters per kernel: the scale σ , and the orders
νx and νy.

6 Conclusion
We propose to explicitly learn the frequencies present in the data by encoding these
in a trainable network parameter. We start from the structured filters based on
Gaussian derivative basis and make the observation that by learning the order of
the Gaussian derivative we can learn to control the filter frequencies. We show ex-
perimentally that our model can learn the correct frequencies from the data on a
synthetic dataset and test the abilities of our model on standard benchmark datasets
when compared to NiN, ResNet and EfficientNet backbone architectures. Our
model degrades gracefully with fewer training samples, and it can achieve good
accuracy at large parameter reductions.

References
[1] Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks.

TPAMI, 35(8):1872–1886, 2013.

[2] Michele Caputo and Mauro Fabrizio. A new definition of fractional derivative
without singular kernel. Progr. Fract. Differ. Appl, 1(2):1–13, 2015.

[3] François Chollet. Xception: Deep learning with depthwise separable convolu-
tions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1251–1258, 2017.

Citation
Citation
{Lin, Chen, and Yan} 2013

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Pintea, Tomen, Goes, Loog, and van Gemert} 2021

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Pintea, Tomen, Goes, Loog, and van Gemert} 2021

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Pintea, Tomen, Goes, Loog, and van Gemert} 2021

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Pintea, Tomen, Goes, Loog, and van Gemert} 2021

NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 11

[4] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer
networks in unsupervised feature learning. In Proceedings of the fourteenth
international conference on artificial intelligence and statistics, pages 215–
223. JMLR Workshop and Conference Proceedings, 2011.

[5] Fergal Cotter and Nick Kingsbury. Visualizing and improving scattering net-
works. In MLSP, 2017.

[6] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Fe-
lix A Wichmann, and Wieland Brendel. Imagenet-trained cnns are biased to-
wards texture; increasing shape bias improves accuracy and robustness. ICLR,
2019.

[7] Golnaz Ghiasi and Charless C Fowlkes. Laplacian pyramid reconstruction
and refinement for semantic segmentation. In ECCV, 2016.

[8] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xiangyu Yue, Peter
Jin, Sicheng Zhao, and Kurt Keutzer. Squeezenext: Hardware-aware neural
network design. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 1638–1647, 2018.

[9] Kfir Goldberg, Stav Shapiro, Elad Richardson, and Shai Avidan. Re-
thinking fun: Frequency-domain utilization networks. arXiv preprint
arXiv:2012.03357, 2020.

[10] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
ICLR, 2016.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[12] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc:
Automl for model compression and acceleration on mobile devices. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), pages
784–800, 2018.

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. CoRR,
2017.

[14] Jeremy Howard and Sylvain Gugger. Fastai: a layered api for deep learning.
Information, 11(2):108, 2020.

[15] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with
50x fewer parameters and< 0.5 mb model size. CoRR, 2016.

[16] Jorn-Henrik Jacobsen, Jan van Gemert, Zhongyu Lou, and Arnold W. M.
Smeulders. Structured receptive fields in cnns. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

12 NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

[17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. Citeseer, 2009.

[18] Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte. Learning filter basis
for convolutional neural network compression. In ICCV, pages 5623–5632,
2019.

[19] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR, 2013.

[20] Tony Lindeberg. Scale-space theory in computer vision, volume 256. Springer
Science & Business Media, 2013.

[21] Tony Lindeberg. Scale-covariant and scale-invariant gaussian derivative net-
works, 2020.

[22] Shangzhen Luan, Chen Chen, Baochang Zhang, Jungong Han, and
Jianzhuang Liu. Gabor convolutional networks. IEEE Transactions on Im-
age Processing, 27(9):4357–4366, 2018.

[23] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2:
Practical guidelines for efficient cnn architecture design. In Proceedings of
the European conference on computer vision (ECCV), pages 116–131, 2018.

[24] Stéphane Mallat. A wavelet tour of signal processing. Academic press, 1999.

[25] Stéphane Mallat. Group invariant scattering. Communications on Pure and
Applied Mathematics, 65(10):1331–1398, 2012.

[26] J-B Martens. The hermite transform-theory. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 38(9):1595–1606, 1990.

[27] Edouard Oyallon, Eugene Belilovsky, and Sergey Zagoruyko. Scaling the
scattering transform: Deep hybrid networks. In ICCV, 2017.

[28] Juan C Pérez, Motasem Alfarra, Guillaume Jeanneret, Adel Bibi, Ali Thabet,
Bernard Ghanem, and Pablo Arbeláez. Gabor layers enhance network robust-
ness. In European Conference on Computer Vision, pages 450–466. Springer,
2020.

[29] Silvia L Pintea, Nergis Tomen, Stanley F Goes, Marco Loog, and Jan C van
Gemert. Resolution learning in deep convolutional networks using scale-
space theory. arXiv:2106.03412, 2021.

[30] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin,
Fred Hamprecht, Yoshua Bengio, and Aaron Courville. On the spectral bias
of neural networks. In International Conference on Machine Learning, pages
5301–5310. PMLR, 2019.

[31] Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation invari-
ant scattering for texture discrimination. In CVPR, 2013.

[32] Eero P Simoncelli, William T Freeman, Edward H Adelson, and David J
Heeger. Shiftable multiscale transforms. IEEE transactions on Information
Theory, 38(2):587–607, 1992.

NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 13

[33] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. ICLR, 2015.

[34] Amarjot Singh and Nick Kingsbury. Efficient convolutional network learning
using parametric log based dual-tree wavelet scatternet. In CVPR workshop,
2017.

[35] Ivan Sosnovik, Michał Szmaja, and Arnold Smeulders. Scale-equivariant
steerable networks. ICLR, 2020.

[36] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 2818–2826, 2016.

[37] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for con-
volutional neural networks. In International Conference on Machine Learn-
ing, pages 6105–6114. PMLR, 2019.

[38] Nergis Tomen and Jan van Gemert. Spectral leakage and rethinking the kernel
size in cnns. arXiv preprint arXiv:2101.10143, 2021.

[39] Nergis Tomen, Silvia Laura Pintea, and Jan van Gemert. Deep continuous
networks. In International Conference on Machine Learning (ICML), 2021.

[40] Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P Xing. High-frequency
component helps explain the generalization of convolutional neural networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8684–8694, 2020.

[41] Thomio Watanabe and Denis F Wolf. Image classification in frequency
domain with 2srelu: a second harmonics superposition activation function.
CoRR, 2020.

[42] Andrew P Witkin. Scale-space filtering. In Readings in Computer Vision,
pages 329–332. Elsevier, 1987.

[43] Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and
Gabriel J. Brostow. Harmonic networks: Deep translation and rotation equiv-
ariance. In CVPR, July 2017.

[44] Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo
Ren. Learning in the frequency domain. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1740–1749,
2020.

[45] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark San-
dler, Vivienne Sze, and Hartwig Adam. Netadapt: Platform-aware neural
network adaptation for mobile applications. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 285–300, 2018.

14 NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

[46] Dong Yin, Raphael Gontijo Lopes, Jonathon Shlens, Ekin D Cubuk, and
Justin Gilmer. A fourier perspective on model robustness in computer vision.
NeurIPS, 2019.

[47] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An
extremely efficient convolutional neural network for mobile devices. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 6848–6856, 2018.

