
Using phase instead of optical flow
for action recognition

Omar Hommos1, Silvia L. Pintea1,
Pascal S.M. Mettes2, Jan C. van Gemert1

1Computer Vision Lab, Delft University of Technology, Netherlands
2Intelligent Sensory Interactive Systems, University of Amsterdam, Netherlands

Abstract. Currently, the most common motion representation for ac-
tion recognition is optical flow. Optical flow is based on particle tracking
which adheres to a Lagrangian perspective on dynamics. In contrast to
the Lagrangian perspective, the Eulerian model of dynamics does not
track, but describes local chances. For video, an Eulerian phase-based
motion representation, using complex steerable filters, has been success-
fully employed recently for motion magnification and video frame inter-
polation. Inspired by these previous works, here, we proposes learning
Eulerian motion representations in a deep architecture for action recog-
nition. We learn filters in the complex domain in an end-to-end manner.
We design these complex filters to resemble complex Gabor filters, typ-
ically employed for phase-information extraction. We propose a phase-
information extraction module, based on these complex filters, that can
be used in any network architecture for extracting Eulerian represen-
tations. We experimentally analyze the added value of Eulerian motion
representations, as extracted by our proposed phase extraction module,
and compare with existing motion representations based on optical flow,
on the UCF101 dataset.

Keywords: Motion representation, phase derivatives, Eulerian motion repre-
sentation, action recognition.

1 Introduction

Recent advances in action classification rely on training Convolutional Neural
Networks (ConvNets) on large video datasets [2,11,19,23]. Such ConvNets need
to learn a suitable representation for motion, as it is important for discriminating
similar actions that occur in a visually similar context: e.g. Basketball Throw and
Basketball Dunk [10]. Motion information is typically modeled by using optical
flow as input to a separate network stream [19], or by using 3D convolutions [23],
on stacks of input RGB frames and optical flow field stacks [2,5,14,18,19,27]. In
this paper, inspired from the suggestions in [17], we zoom in on an alternative
to using optical flow as a motion representation for deep action recognition in
video: we investigate using phase in the complex domain instead of optical flow.

2 O. Hommos, S.L. Pintea, P.S.M Mettes, J.C. van Gemert

(a) Original input. (b) Optical flow. (c) RGB derivative. (d) Phase derivative.

Fig. 1. Motion representations: (a) Original input. (b) Optical flow visualized in
HSV space, where hue indicates the direction, and the saturation is the motion magni-
tude. (c) Difference of RGB (dRGB), over time. (d) Difference of phase (dPhase), over
time (as described in section 3). For dRGB and dPhase, red indicates a positive value,
while blue indicates a negative value. The optical flow fails to capture the motion of
the waves around the boat. The Eulerian representations better describe the motion
at the boundaries of the objects.

Optical flow follows the Lagrangian perspective on motion representations:
tracking a pixel over time using its appearance, and the appearance information
of neighboring pixels. Dissimilarly, an Eulerian motion representation focuses
on the change in image information at a fixed spatial location, over time. La-
grangian methods require explicit point matching to obtain tracks, which is
difficult on untextured surfaces, e.g. water, hula hoops, or in the presence of
occlusion. Eulerian motion representations, instead, do not need to compute ex-
plicit correspondences, yet they are sensitive to sudden large motions. Figure 1
depicts this difference between optical flow and Eulerian representations, defined
as RGB and phase derivatives over time, on a few video examples.

Previously, Eulerian representations based on RGB differences, have been
considered in [26]. However, they were only used as an input to the same network
architecture employed for RGB inputs. The performance is highly dependent
on the choice of network architecture [2]. Hence, architecture-level changes are
necessary to make full use of the Eulerian motion information. In this work, we
propose a phase-extraction module composed of a complex convolutional layer

Using phase instead of optical flow for action recognition 3

followed by an arctangent function. The proposed module can be trained end-
to-end and can be integrated in any existing network architecture.

This work brings forth: (i) the use of Eulerian motion representations for
action recognition; (ii) learning phased information in an end-to-end manner by
using convolutional layers in the complex domain and complex activations; (iii)
an empirical analysis of the advantages and failure cases for the phase-based
motion representations, as well as a comparison with existing optical flow-based
motion representations on the UCF101 dataset.

2 Related work

Learning action recognition. Top performing action recognition architectures
use two-stream networks [4,5,19]. When using a separate motion stream, the
input is typically optical flow, and the stream uses popular architectures such
as VGG-16 or ResNet, and inter-stream fusion [4,5]. In this work, we adapt the
motion stream of [19] architecture for our final network. However, our motion
stream describes Eulerian motion.

A natural extension to video is the use of 3D convolutions proposed in [23].
In [2], the Inception architecture [21] enhanced with 3D convolutions proved
effective. This architecture, coined I3D, coupled with a new large action recog-
nition dataset, Kinetics [11], delivered state-of-the-art performance. In [27] 3D
convolutions using kt×k×k filters, are replaced with the more effective 1×k×k
followed by kt × 1 × 1 filters, to reduce computational costs. In this work, we
do not consider 3D convolutions, but rather focus on learning Eulerian motion
descriptions.

In [24] long term convolutions based on optical flow are proposed for action
recognition. Recurrent Neural Networks (RNN) are also successfully used for
modelling temporal information [3,15]. Our proposed model can be used in com-
bination with such architectures. Where our proposed complex layer plays the
feature extraction role.

Motion representations for action recognition. To increase inference speed,
in [26] RGB differences are used instead of optical flow. It does not outperform
optical flow, yet it obtains comparable performance while being ×25 faster at
inference-time. The use of motion vectors, that are similar to optical flow but
capture only coarse-motion, is proposed in [28]. The motion vectors obtain a
×27 speed improvement over two-stream networks [19], while having compara-
ble performance. Unlike these methods, we propose learning Eulerian motion
representation in an end-to-end framework for tackling action recognition where
optical flow fails.

A cascade of networks that learn to generate optical flow for the task of
action recognition is used in [14,18]. A similar motion representation is used in
[30] before the classification network. Explicit use of optical flow as an input
remains superior over other methods for action recognition. However, our aim
here is to research if we can find a complementary motion representation to the
optical flow.

4 O. Hommos, S.L. Pintea, P.S.M Mettes, J.C. van Gemert

Phase-based methods. Video phase information has been successfully used
before for tasks such as motion magnification and video frame interpolation.
Work such as [6,9] reconstruct optical flow by extracting phase changes from im-
age sequences and optimizing for velocity. Measuring phase difference of a stereo
image pair helps in estimating disparity at each pixel location for depth esti-
mation [7]. In [12,25,29] motion magnification of small movements was possible
by measuring phase variations using a complex steerable pyramids over a se-
quence of images, and then magnifying motion in a reconstructed video. In [16],
a ConvNet architecture was proposed to encode, manipulate, and then decode
two subsequent input frames, to obtain an output frame with magnified motion.
PhaseNet was proposed in [13], which is a decoder network that receives the
decomposition of two input frames, the result of applying steerable pyramid fil-
ters, and tries to predict the decomposition of the target frame. Similar to these
works, and inspired by [17] we adapt the idea of phase-based motion measure-
ment, however dissimilar to previous works we propose to learn this end-to-end,
through complex convolutions.

3 Phase-Based Motion Description

Fourier’s shift theorem states that a shift in time domain corresponds to a re-
lated linear phase shift in the frequency domain. Since phase variations directly
correspond to change [8,16,25], they can serve as a viable representation of mo-
tion. This does not only apply to the phase of the Fourier basis functions (sine
waves), but also to the phase of other representations in the complex domain
such as complex-steerable pyramids [25]. Here, we build on the idea of repre-
senting local motion through the phase responses obtained by using a complete
set of complex filters.

3.1 Complex Filters for Motion Description

Fleet and Jepson [6] showed that the temporal evolution of contours of con-
stant phase provides a good approximation to the motion field. In [6,9] complex
quadrature filters are used to extract the contours of constant phase. The tem-
poral derivative of these responses is then employed to estimate object velocity
in videos. Specifically, a set of complex Gabor quadrature filters are used for ex-
tracting phase information. A complex quadrature Gabor filter,H(x, y;λ, θ, ψ, σ, γ),
is defined as:

H(x, y;λ, θ, ψ, σ, γ) = G(x, y;λ, θ, ψ, σ, γ) + iG(x, y;λ, θ,
π

2
− ψ, σ, γ) (1)

= exp

(
− x′

2
+ γ2y′

2

2σ2

)
× exp

(
i
(
2π
x′

λ
+ ψ

))
, (2)

where G(·) is a standard Gabor filter, i =
√
−1, x′ = x cos(θ)+y sin(θ), and y′ =

−x sin(θ)+y cos(θ), λ is the wavelength of the wave, θ represents its orientation,

Using phase instead of optical flow for action recognition 5

(a) Gabor filters. (b) Quadrature responses. (c) Perpendicular responses.

Fig. 2. Quadrauture versus perpendicular filters. (a) From top to bottom: the
real and imaginary parts of a complex Gabor, followed by rotated real Gabor. Top
and middle form the complex quadrature pair, while top and bottom form a complex
perpendicular pair. (b) Phase responses to a complex quadrature Gabor. (c) Phase
response to a complex perpendicular filter. In (b) only vertical orientations are high-
lighted, while both horizontal and vertical orientations are highlighted in (c), providing
a more detailed description of the phase contours.

ψ is its phase offset, σ is the standard deviation of the Gaussian envelope, and
γ is the spatial aspect ratio of the Gaussian, used to control its ellipticity.

In our case, we to not wish to precisely estimate the velocity of objects over
time in the video, but rather describe the motion. Therefore, we relax the need
of using quadrature filters for finding contours of constant phase and instead,
we opt for the more simple perpendicular complex filters.

Perpendicular filters. Learning complex quadrature filters using convolutional
networks is difficult as it requires regularizing to ensure that the phase shift
between the real and imaginary filters is π/2. Here we opt for using perpendicular
filters. Combining information from two perpendicular orientations gives a more
complete, but less-orientation sensitive, response.

To ensure that the learned filters are perpendicular, we fix the real filters, so
they do not receive gradients during the training. We only update the imaginary
filters during training and reinitialize the real filters as a π/2 rotated version
of the imaginary filters. This choice avoids numeric problems when extracting
the phase information as atan(xi

xr
), where xr and xi are the real and imaginary

responses, respectively.

We find the perpendicular filters to be sufficient for describing motion con-
tours in phase domain, and we validate this in our experiments. Figure 2 depicts
the difference between the responses of quadrature complex filters and perpen-
dicular complex filters.

6 O. Hommos, S.L. Pintea, P.S.M Mettes, J.C. van Gemert

Fig. 3. Network Architecture. We input to our network temporal image derivatives.
From the input information, we learn perpendicular complex Gabor-like filters, in our
proposed complex layer. We use the responses of these filters to compute the phase.
This information is subsequently send to the following layers in the network.

Sinusoidal Gabor regularization. To encourage the learned filters to resemble
Gabor filters, we propose a regularization. We only train the imaginary part of
our complex filters. Since the imaginary Gabor filter is a sine multiplied by a
Gaussian, we define the imaginary part of our complex filters as a multiplication
between a filter initialized randomly and a non-trainable Gaussian kernel. We
subsequently, regularize the trainable part of the filter to correspond to a sine.

In the Fourier domain a sine corresponds a single point, ignoring the domain
symmetry. Thus, we minimize the L2 distance from each point of the filter in
the Fourier domain to the center of mass of the filter in the Fourier domain:

R(w) =
n∑

i=1

‖wi − CoM(w)‖2, (3)

where n is the dimensionality of w, w are the responses of the imaginary fil-
ters passed through a Real-FFT (Real Fast Fourier Transform), and CoM(·)
computes the center of mass.

3.2 Learning Phase-Based Descriptions

We adapt a standard ConvNet to learn phase, by learning complex Gabor-like
filters. The trainable part of the filters is first initialized randomly. Only the
imaginary part of the filters is trained, and regularized with the proposed Gabor
regularization. The real part of the complex filter is a π/2 rotated version of the

Using phase instead of optical flow for action recognition 7

imaginary filters. We use these learned filters to extract phase information, and
we pass this information to the following layers for action recognition.

Given that the temporal gradient of the phase is the one encoding the motion
[6], we need to estimate temporal derivatives of the phase in our network. How-
ever, differentiating the responses of a convolution is identical to differentiating
one of the functions and then performing the convolution:

∂

∂t
(f ∗ g) =

∂f

∂t
∗ g, (4)

provided that two conditions hold: both functions f and g must be absolutely
integrable, and f must have an absolutely integrable (L1) weak derivative [1].
Given this property, we input temporal image derivatives into our network, to
estimated temporal derivatives of phase in our proposed module.

Figure 3 displays our proposed network architecture: we input image deriva-
tives, and from these we learn perpendicular Gabor-like complex filters. We
apply the complex non-linearity, CReLU, proposed in [22] after our complex
convolutional layer. CReLU effectively applies ReLU separately on the real and
imaginary feature maps. We also use standard BN (Batch Normalization). We
subsequently, estimate the phase as the arctangent of the responses of these
filters, and we send this information to the following layers.

4 Experiments

4.1 Experimental setup

We use the network architecture displayed in Figure 3. This is a replica of VGG-
M, corresponding to one stream in [19], but in which the first layer is replaced
with our complex layer. For clarity we will refer to it as: PhaseStream. All ex-
periments are performed on UCF101 [20], containing 101 action classes, with
an average of 180 frames/video. We follow the standard training/testing data
splitting. For the Exp 1, where we analyze design choices, we evaluate using
only one standard data split. While, for Exp 2, we evaluate using the three
standard data splits on UCF101. For all experiments, we use momentum SGD
as an optimizer with momentum of 0.9. Videos are uniformly sampled from all
classes to create a batch of 256. The dropout ratio is set to 0.9 and the learning
rate is set to 0.01 and reduced by a factor of 10 at iterations 45000 and 75000.
We train for 100,000 iterations. Data is augmented with random crops and flips.

4.2 Exp 1: Importance of Eulerian information

Exp 1.(a): The use of perpendicular versus quadrature filters. To quan-
tify the quality of learned perpendicular filters, we initialize our proposed com-
plex layer with rotated Gabor filters. These filters are fixed throughout training.

8 O. Hommos, S.L. Pintea, P.S.M Mettes, J.C. van Gemert

(i) Initialized filters. (ii) Regularized complex filters.

Fig. 4. Exp 1.(a): The effect of the sinusoidal Gabor regularization: (i) randomly
initialized filters; (ii) trained filters with the sinusoidal Gabor regularization. The Gabor
regularization compels the learned filters to be more similar to Gabor filters.

Filter type No. of filters Training acc. Testing acc.

Quadrature Gabor 24 ∼90 % 60.5 %
Perpendicular Gabor 24 ∼70 % 64.8 %
Perpendicular Gabor 96 ∼80 % 71.6 %

Table 1. Exp 1.(a): Accuracy on UCF101 when using the proposed perpendicular
complex filters when compared to quadrature Gabor filters. The network receives as
input grayscale image derivatives over time, dGray. The perpendicular filters tend to
generalize better than the quadrature filters.

The results serve as a benchmark for the learning process. To compare quadra-
ture filters with the perpendicular ones, our complex layer is initialized with
quadrature Gabor filters, also fixed throughout training.

Table 1 shows the results of the experiment. We consider two settings for the
filter banks: one consisting of 24 filters, similar to the one in [6]; and the other
consisting of 96 filters, covering 12 logarithmically spaced frequencies between 0.2
and 5 Hz, over the same 8 directions θ = π/8×{0, 1, .., 7}. From the experimental
analysis we conclude that the perpendicular filters help the network generalize
better to unseen data.

Figure 4.(i) shows the initial set of complex filters, with random initializa-
tion. While Figure 4.(ii) shows the learned filters in our complex layer with the
incorporated sinusoidal Gabor regularization described in section 3.2. The reg-
ularization is effective in encouraging the learned complex filters to resemble
Gabor filters.

Exp 1.(b): The importance of the input. Table 2 shows the performance of
different inputs on two network architectures: the VGG-M [19] and our variant
of VGG-M in which we replace the first convolution with a complex convolution.
We refer to it as PhaseStream. In Table 2.(i) we consider Eulerian inputs: dRGB
– derivative of RGB frames obtained by temporally subtracting 2 consecutive
frames, dPhase – derivative of phase frames, dGray – derivative of grayscale

Using phase instead of optical flow for action recognition 9

VGG-M [19] PhaseStream
Input (our)

RGB 52.3 % 51.3 %
OF 67.7 % N/A

dRGB 45.5 % 48.8 %
dGray 74.3 % 74.4 %
dPhase 65.4 % 70.1 %

VGG-M [19] PhaseStream
Input (our)

5×OF 80.4 % N/A

5×dGray 68.7 % 75.3 %
5×dPhase 70.8 % 68.2 %

(i) Different inputs. (ii) Stacked inputs.

Table 2. Exp 1.(b): Accuracy (%) on UCF101 for different network inputs for our
proposed PhaseStream compared to the VGG-M [19]. (i) We compare Eulerian repre-
sentation: dGray – derivative of grayscale inputs over time, dRGB – derivative of RGB
frames, dPhase – derivative of phase images, with OF – optical flow, and RGB. The
dPhase and dGray are stronger than using OF as input. (ii) We consider also stacked
inputs: 5×OF – OF stacked over 5 frames, 5×dGray – 5 grayscale derivatives stacked,
and 5×dPhase – 5 phase derivatives stacked. When stacking OF, 5×OF, there is a sub-
stantial gain over stacked Eulerian inputs. Overall, using the proposed PhaseStream is
beneficial for all inputs except for stacked dPhase, 5×dPhase. We highlight in bold the
network architecture with the highest accuracy.

frames; and non-Eulerian inputs: RGB and OF (Optical Flow). In Table 2.(ii)
we consider stacked variants of the inputs: 5×OF where we stack 5 consecutive
OF inputs, 5×dGray and 5×dPhase. The Eulerian inputs perform better than
the non-Eulerian ones on the VGG-M. However, when stacking the inputs, OF
outperforms the rest. Our PhaseStream obtains improved performance for all
inputs except for 5×dPhase. We do not evaluate our PhaseStream network on
OF inputs, as computing complex responses over OF does not seem theoretically
informative. The stacked Eulerian representations do not perform well due to the
large or fast motion, which may result in combining different motion patterns of
different object or adding noise into the motion representation.

Table 3 shows the relative improvements in accuracy on the UCF101 dataset
for VGG-M [19] and our PhaseStream with grayscale frame derivatives, dGray,
as input. We show the top 10 classes with the largest improvements in accu-
racy. VGG-M performs better on action categories involving subtle motion, but
which are more visual – containing a specific visual object such as: Archery,
ApplyLipstick, or PlayingFlute. The PhaseStream obtains larger improvements
over VGG-M from repetitive activities such as: BoxingPunchingBag, Walking-
WithDog, MopppingFloor, ShavingBeard. Examples of video frames from these
categories are displayed in Figure 5. We show the network inputs, dGray inputs,
on the second row. On the last row we show the associated temporal deriva-
tives of phase information, which is the type of information we would expect the
network to rely on.

10 O. Hommos, S.L. Pintea, P.S.M Mettes, J.C. van Gemert

VGG-M [19] ∆% PhaseStream (our) ∆%

Archery 19.5 % FloorGymnastics 19.4%
JumpingJack 15.8 % TennisSwing 16.3 %
Rowing 13.9 % BoxingPunchingBag 14.3 %
CricketShot 12.2 % WalkingWithDog 13.9 %
Skijet 10.7 % GolfSwing 12.8 %
BlowDryHair 10.5 % MoppingFloor 11.8 %
PlayingFlute 10.4 % HighJump 10.8 %
ApplyLipstick 9.4 % UnevenBars 10.7 %
PlayingCello 9.1 % ShavingBeard 9.3 %
HulaHoop 8.8 % HandstandWalking 8.8 %

Table 3. Exp 1.(b): The relative improvements in accuracy on UCF101 between
VGG-M [19] and our PhaseStream with dGray as input. We show the top 10 classes
for each one of the architectures. The networks learn complementary information.

Architecture VGG-M [19] TSN [26] PhaseStream (our)
Input dGray 5×OF dGray

Standard accuracy 74.3 % 86.9 % 74.4 %
Shuffled accuracy 49.4 % 59.6 % 51.4 %

Relative change (%) 33.5 % 31.4 % 30.1 %

Table 4. Exp 1.(c): Test accuracies on UCF101 when training our PhaseStream,
VGG-M [19] and TSN [26] on standard inputs, as well as on temporally shuffled inputs.
We also show the relative drop in performance, in percentages. The VGG-M suffers a
slightly larger relative drop in performance, while TSN and our proposed PhaseStream
suffer a comparable drop in performance, when the temporal ordering is lost.

Exp 1.(c): Robustness of motion information. To quantify the robustness
of motion information, we shuffle the input frames before calculating the tempo-
ral frame derivatives and OF, to be input to the network. This step effectively
removes the temporal structure of the original video [18,27]. We analyze how
our proposed PhaseStream performs when compared with the VGG-M [19] and
TSN [26]. For our PhaseStream as well as for VGG-M, we use as input grayscale
temporal image derivatives, dGray.

Table 4 shows the test accuracies on UCF101, when feeding the networks
standard inputs as well as temporally shuffled inputs. Optical flow numbers are
taken from [18] for the TSN architecture [26]. We also show the relative drop in
performance, in percentages, caused by the loss of temporal ordering. The TSN
performs the best in terms of absolute accuracy scores. When looking at the rel-
ative scores, the VGG-M has a slightly larger relative loss of performance, while
TSN and our proposed PhaseStream suffer a similar relative loss in accuracy.

Using phase instead of optical flow for action recognition 11

(i) WalkingWithDog. (ii) MoppingFloor. (iii) ShavingBeard. (iv) BoxingPunchingBag.

Fig. 5. Exp 1.(b): Examples of video frames from the classes BoxingPunchingBag,
WalkingWithDog, MopppingFloor, ShavingBeard, where the PhaseStream performs bet-
ter than the VGG-M [19]. We also display the temporal derivatives of grayscale inputs
on the second row, and the temporal derivative of phase for these video frames, on the
last row. These classes are characterized by repetitive motion patterns.

4.3 Exp 2: Comparison with existing work.

Table 5 shows the action recognition accuracy on the UCF101 dataset for a num-
ber of popular action recognition models: Two-Stream [19], Two-Stream ResNets
[4], TSN [26], Motion Vectors [28], ActionFlow [14] and our PhaseStream. We
train our PhaseStream on a stack of five differences of grayscale inputs, 5×dGray.
Given that we focus on motion representations, we show the performance on the
motion (temporal) stream only, for all the considered architectures.

TSN [26] achieves the best performance as it relies on an ensemble of 3
two-stream networks, and provides several architecture-level improvements over

12 O. Hommos, S.L. Pintea, P.S.M Mettes, J.C. van Gemert

Network Motion (Temporal) Stream

TSN [26] 83.8 %
Two-Stream [19] 81.2 %
Two-Stream ResNets [4] 79.1 %
Motion Vectors [28] 79.3 %
ActionFlow [14] 70.0 %

PhaseStream (our) on 5 × dGray 76.4 %

Table 5. Exp 2: Accuracy (%) on UCF101 comparing our proposed PhaseStream
trained on 5 × dGray, with the Two-stream [19], Two-stream ResNet [4], TSN [26],
Motion Vectors [28], and ActionFlow [14]. We show only the accuracy on the motion
(temporal) stream for these methods, as we focus only on learning motion represen-
tations. The TSN method performs the best. Our proposed approach obtains superior
performance to ActionFlow [14], while having slightly lower performance than Motion
Vectors [28], and Two-stream ResNets [4], on the temporal stream.

them. When it comes to Two-stream network [19], Two-stream ResNets [4], and
Motion Vectors [28], the temporal input is a stack of 10 temporal representa-
tions. We use only a stack of 5 motion representations, as we did not see a
great improvement from temporally stacking the Eulerian representations. Our
proposed method on the temporal stream, obtains superior performance to Ac-
tionFlow [14], while having slightly lower performance than Motion Vectors [28],
and Two-stream ResNets [4]. These results validate that there is gain to be
obtained from using Eulerian motion representations for action recognition.

4.4 Limitations and possible improvements

Our proposed phase-based motion description shares similar limitations to the
classic phase-based approaches, namely dealing with noisy inputs and high-
velocity actions. Learning an Eulerian transformation from two consecutive frames
independently, could potentially solve the former problem, while increasing the
number of proposed complex layers in the network architecture could help the
performance.

Another limitation to keep in mind is the number of distinct overlapping mo-
tions patterns per spatial neighborhood. Having three or more motion patterns
per neighborhood in a video, increases the likelihood of errors in the Eulerian
motion representation. This can happen if the effective size of the receptive field
of our perpendicular complex filters in the proposed complex layer is too high.
A possible improvement to this proposed Eulerian method of learning motion
representations for action recognition, is the use of 3D convolutional filters. This
may alleviate the problem of achieving limited improvement when stacking Eu-
lerian inputs.

The project was implemented using TensorFlow. The source code for our
complex layer can be found at https://github.com/11maxed11/phase-based-action-
recognition.

https://github.com/11maxed11/phase-based-action-recognition
https://github.com/11maxed11/phase-based-action-recognition

Using phase instead of optical flow for action recognition 13

5 Conclusions

We present a new architecture for learning phase-based descriptions from Eule-
rian inputs, in the context of action recognition. The proposed method relies on
learning perpendicular complex filters in a ConvNet. To help the network learn
Gabor-like complex filters we propose a regularization scheme based of frequency
analysis, for our learned complex filters.

Empirical evaluation shows that this architecture delivers an improvement
for several Eulerian inputs, while also exceeding the baseline for recognition
using a single optical flow input. Further improvements of the proposed method
are possible, by considering different alternative to boost the performance of
the temporal representation by using LSTM layers [3,15], and 3D convolutional
layers [23].

References

1. Bracewell, R.: Convolution” and” two-dimensional convolution.” ch. 3 in the fourier
transform and its applications (1965)

2. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: CVPR. pp. 4724–4733. IEEE (2017)

3. Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan,
S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual
recognition and description. In: CVPR. pp. 2625–2634 (2015)

4. Feichtenhofer, C., Pinz, A., Wildes, R.: Spatiotemporal residual networks for video
action recognition. In: NIPS. pp. 3468–3476 (2016)

5. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fu-
sion for video action recognition. In: CVPR. pp. 1933–1941 (2016)

6. Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local
phase information. IJCV 5(1), 77–104 (1990)

7. Fleet, D.J., Jepson, A.D., Jenkin, M.R.: Phase-based disparity measurement.
CVGIP: Image understanding 53(2), 198–210 (1991)

8. Freeman, W.T., Adelson, E.H., et al.: The design and use of steerable filters.
TPAMI 13(9), 891–906 (1991)

9. Gautama, T., Van Hulle, M.M., et al.: A phase-based approach to the estimation
of the optical flow field using spatial filtering. TNN 13(5), 1127–1136 (2002)

10. Jain, M., van Gemert, J.C., Snoek, C.G.: What do 15,000 object categories tell us
about classifying and localizing actions? In: CVPR. pp. 46–55 (2015)

11. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S.,
Viola, F., Green, T., Back, T., Natsev, P., et al.: The kinetics human action video
dataset. CoRR (2017)

12. Kooij, J.F., van Gemert, J.C.: Depth-aware motion magnification. In: ECCV. pp.
467–482 (2016)

13. Meyer, S., Djelouah, A., McWilliams, B., Sorkine-Hornung, A., Gross, M., Schroers,
C.: Phasenet for video frame interpolation. In: CVPR. pp. 498–507 (2018)

14. Ng, J.Y.H., Choi, J., Neumann, J., Davis, L.S.: Actionflownet: Learning motion
representation for action recognition. CoRR (2016)

15. Ng, J.Y.H., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,
Toderici, G.: Beyond short snippets: Deep networks for video classification. In:
CVPR. pp. 4694–4702. IEEE (2015)

14 O. Hommos, S.L. Pintea, P.S.M Mettes, J.C. van Gemert

16. Oh, T.H., Jaroensri, R., Kim, C., Elgharib, M., Durand, F., Freeman, W.T., Ma-
tusik, W.: Learning-based video motion magnification. CoRR (2018)

17. Pintea, S.L., van Gemert, J.C.: Making a case for learning motion representations
with phase. In: ECCV workshop. pp. 55–64 (2016)

18. Sevilla-Lara, L., Liao, Y., Guney, F., Jampani, V., Geiger, A., Black, M.J.: On the
integration of optical flow and action recognition. CoRR (2017)

19. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: NIPS. pp. 568–576 (2014)

20. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: A dataset of 101 human actions classes
from videos in the wild. CoRR (2012)

21. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (June
2015)

22. Trabelsi, C., Bilaniuk, O., Zhang, Y., Serdyuk, D., Subramanian, S., Santos, J.F.,
Mehri, S., Rostamzadeh, N., Bengio, Y., Pal, C.J.: Deep complex networks. CoRR
(2017)

23. Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: C3d: generic features
for video analysis. CoRR, abs/1412.0767 2(7), 8 (2014)

24. Varol, G., Laptev, I., Schmid, C.: Long-term temporal convolutions for action
recognition. TPAMI 40(6), 1510–1517 (2018)

25. Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Phase-based video mo-
tion processing. TOG 32(4), 80 (2013)

26. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van Gool, L.: Temporal
segment networks: Towards good practices for deep action recognition. In: ECCV.
pp. 20–36. Springer (2016)

27. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature
learning for video understanding. CoRR (2017)

28. Zhang, B., Wang, L., Wang, Z., Qiao, Y., Wang, H.: Real-time action recognition
with enhanced motion vector cnns. In: CVPR. pp. 2718–2726. IEEE (2016)

29. Zhang, Y., Pintea, S., van Gemert, J.: Video acceleration magnification. In: CVPR.
IEEE (2017)

30. Zhu, Y., Lan, Z., Newsam, S., Hauptmann, A.G.: Hidden two-stream convolutional
networks for action recognition. CoRR (2017)

	Using phase instead of optical flow for action recognition

