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Abstract

Objects in videos are typically characterized by contin-
uous smooth motion. We exploit continuous smooth motion
in three ways. 1) Improved accuracy by using object motion
as an additional source of supervision, which we obtain by
anticipating object locations from a static keyframe. 2) Im-
proved efficiency by only doing the expensive feature com-
putations on a small subset of all frames. Because neigh-
boring video frames are often redundant, we only com-
pute features for a single static keyframe and predict ob-
ject locations in subsequent frames. 3) Reduced annotation
cost, where we only annotate the keyframe and use smooth
pseudo-motion between keyframes. We demonstrate com-
putational efficiency, annotation efficiency, and improved
mean average precision compared to the state-of-the-art
on four datasets: ImageNet VID, EPIC KITCHENS-55,
YouTube-BoundingBoxes and Waymo Open dataset. Our
source code is available at https://github.com/L-KID/Video-
object-detection-by-location-anticipation.

1. Introduction

Humans assume object permanence: blink your eyes,
and the world is still there. Similarly, video frames are re-
dundant, and missing some frames when watching a movie
does not drastically change the scene. Actually, for the
parts that did change, if these parts changed coherently, they
might hint at a sense of objectness, as hypothesized by the
Gestalt law of common fate.

As illustrated in Fig. 1, here we explore these observa-
tions in the context of video object detection in three ways:
1) Improved accuracy by exploiting an additional source of
supervision: the coherent motion from the law of common
fate; by predicting object motion from a static image. 2) Im-
proved efficiency by exploiting redundancy to reduce com-
putational cost by only processing sampled keyframes and
predict object motion for the missing frames in-between.
3) Reduced annotation cost by only annotating sampled

Figure 1. Anticipating future object locations from a static
keyframe is efficient. We only do the expensive feature extraction
on a small subset of keyframes, while still accessing bounding-box
locations for all video frames. Moreover, exploiting motion cues
as additional supervision improves object detection. By sampling
a static keyframe at time t and anticipating the object locations
over the next T timesteps, we incorporate temporal consistency
and smoothness of object motion.

keyframes. Thus, we improve accuracy and save compu-
tation and annotation time by simply skipping the feature
computation and/or the annotation for a large majority of
the frames.

We make the following contributions: (i) A video ob-
ject detection method that samples static keyframes and pre-
dicts object motion for unseen future frames. (ii) Compu-
tational efficiency, as our method only extracts features for
sampled static keyframes; (iii) Data efficiency, as we use
sparse annotations only at the sampled keyframes, hallu-
cinating motion in-between these sparse annotations. (iv)
Our extensive experimental results on ImageNet-VID [57],
EPIC KITCHENS-55 [11], YouTube-BoundingBoxes [55]
and Waymo Open dataset [14] show that our approach im-
proves accuracy over the state-of-the-art methods, while be-
ing faster at both training and inference time.
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2. Related work

Video object detection. Several methods do temporal mod-
eling by post-processing still-image object detectors such as
post-processing Faster-RCNN [26, 39] or post-processing
Mask RCNN [4, 43]. Alternatives include recurrent blocks
[48, 64] or optical flow [79, 77]. This can be further ex-
tended with instance and pixel-level calibrations over time
[69], or using a space-time lattice [6]. More recently,
the field has advanced by aggregating temporal informa-
tion: either by defining detection correlations as a graph
in SELSA [71], or by using global and local temporal pool-
ing in MEGA [7]. MEGA is further extended by consid-
ering all pairwise frames in TF-Blender [9], while HVR-
Net [23] integrates inter-video and intra-video object re-
lations. IFF-Net[37] uses a feature flow estimating mod-
ule to indicate the feature displacement. LWDN [35] does
not simply aggregate features, but aligns the features be-
tween keyframes by adopting a memory mechanism. In
contrast, we avoid computationally demanding optical flow
and recurrent blocks, and we do not aggregate neighbor-
ing frames, or use temporal heuristics to post-process still-
image detections. Instead, we anticipate future object loca-
tions over time from a single static keyframe, placing tem-
poral prediction at the heart of our model.

Single image motion prediction versus tracking. Object
tracking aims to predict object location in a video. A re-
cent overview of object tracking is given in [8]. In classi-
cal methods, the bounding box around the object to track
is given a priori [60], but can also be estimated by an ob-
ject detector [3, 17, 31, 63]. The object location in the next
frame can be estimated with siamese networks [3], or ob-
ject detections at every frame are linked into tracks by mo-
tion regression [17]. Our method is inspired by tracking,
yet we are different because we predict the object location
in future frames from a single static input image, without
actually using the image features of the future frames.

Anticipating motion from a static single image. A sin-
gle static frame is rich enough to allow predicting of fu-
ture appearance [32, 45, 51, 66], actions [1, 19, 49, 59], and
motion [18, 53, 67]. Such motion predictions, in turn, can
then be used for predicting pedestrians’ behaviors [54, 75]
or other road agents [22]. Moreover, motion prediction can
be used as a self-supervision cue [16, 24, 25, 42, 70] to im-
prove feature learning. Inspired by these works, we use lo-
cation anticipation as an additional source of supervision to
improve the accuracy of the still-image detector, while we
also exploit it for efficiency as it allows us to only compute
features on a subset of still-images, avoiding expensive fea-
ture computations on all frames.

Efficiency in video. Because videos typically sample sev-
eral frames per second (FPS) it is important to have effi-

cient video analysis methods. Successful prior work pro-
poses network architecture adaptations to reduce computa-
tions [15, 40, 44, 46, 52, 80]. For video object detection, it
is efficient to adapt the detector online [58] or to transfer an
image detector to video [38]. Alternatively, computations
can be reduced by focusing only on specific video regions
[36, 62, 74]. Similarly, we also focus on efficiency in video
object detection. We are efficient by predicting object tra-
jectories a few frames ahead and therefore saving computa-
tions by not processing those frames.

Sparse annotations in video. Training a model on sparse
video annotations can be done by iteratively updating the
model in a boosting fashion [2], or propagating groups of
pixels through time [34]. More recent work generates dense
object masks in videos from sparse bounding boxes [73].
Rather than focusing on improving the model accuracy on
sparsely annotated videos, prior work has analyzed what is
the accuracy vs. annotation effort trade-off [50]. Specifi-
cally, for object locations in video, annotations can be gen-
erated through a combination of tracking, frame selection
and active learning [10, 33, 41, 65]. Inspired by these works
we also explore a variant of our model that allows sparse
annotations. We require bounding-box annotations on the
static keyframes, and we experimentally show that we can
hallucinate the motion between keyframes, removing the
need to annotate all frames.

3. Anticipating object locations
Object detection backbone. We illustrate our method in
Fig. 2. We start from a standard static image object detec-
tion backbone. We input static frames uniformly sampled
from the video with a time step T ; we call such static frames
“keyframes”. For each keyframe at time t, the object detec-
tor gives a set of N proposal bounding boxes: Bt={Bi

t}Ni=1

where Bi
t=(xi

t, y
i
t, w

i
t, h

i
t), and (xi

t, y
i
t) are the top-left cor-

ner and (wi
t, h

i
t) are the width and height of the bounding

box. Each Bi
t corresponds to a possible object and has an

associated class cit: {(Bi
t, c

i
t)}Ni=1.

Trajectory subnetwork. Starting from the keyframe detec-
tion bounding boxes Bt, we anticipate object trajectories –
defined as the future bounding box locations of an object
over the following T frames. The trajectory subnetwork is
highlighted in green in Fig. 2. For each keyframe indexed
by t, we define a batch of length T and we input into the
trajectory network three types of inputs: (a) a vector of time
indices of the future trajectories relative to the keyframe in-
dex t batched from [1, .., T ]; (b) the set of bounding boxes
detected at the keyframe Bt={Bi

t}Ni=1 repeated over all T
time steps: [{Bi

t}Ni=1]×T ; and (c) the static keyframe fea-
turemaps extracted via the network mapping f(·) from the
the bounding boxes {f i

t |f i
t=f(Bi

t)}Ni=1, also broadcast for
each of the T time steps: [{f i

t}Ni=1]×T . Note that by in-



Figure 2. Overview: The network starts from a single sampled video keyframe at timestep t. A feature extractor backbone is followed by
an object detector. The object detector outputs for the keyframe at time t a set of N bounding boxes {Bi

t}Ni=1, together with their associated
class probabilities {cit}Ni=1 and keyframe features extracted from each box area {f i

t}Ni=1. Next, our trajectory subnetwork (highlighted in
green) takes as input: (a) a batch of trajectory indices [1, .., T ], where T is the trajectory length; (b) the keyframe bounding boxes repeated
T times and batched, [{Bi

t}Ni=1]×T ; and (c) the box features also repeated T times [{f i
t}Ni=1]×T . These are projected through linear

layers of equal sizes (FC1a, FC1b, FC1c) and the output is concatenated and passed through two additional linear layers. The trajectory
network predicts a set of N trajectories {Ti

t}Ni=1 of length T and their associated classes {cit}Ni=1.

putting into the trajectory subnetwork the future trajectory-
frame indices in (a), we add temporal ordering information:
each future box prediction has an associated frame index.
We map all three inputs: boxes, features and time indices,
through fully connected (FC) layers of equal sizes. We con-
catenate the output features, and pass them through two ad-
ditional fully connected layers.

The output of the trajectory subnetwork is a list of tra-
jectories, one trajectory for each of the N detected objects.
Each trajectory starts at the keyframe indexed by t and ex-
tends up to frame t+T . Concretely, our trajectory predic-
tions are: {Ti

t|Ti
t=(Bi

t, B
i
t+1, .., B

i
t+T )}Ni=1, where we also

add the keyframe bounding box Bt to the trajectory.

3.1. Associating trajectories to ground truth

To optimize the trajectories we need an associated object
class for each trajectory. Each object trajectory Ti

t, indexed
by i, starts with a keyframe bounding box Bi

t , which has a
corresponding object class cit. Each trajectory corresponds
to one object, thus we let each trajectory inherit the class of
its starting keyframe bounding box, yielding: {(Ti

t, c
i
t)}Ni=1.

Moreover, we also need to associate ground truth boxes
B∗ with all predicted boxes along each object trajectory
Ti
t=(Bi

t, B
i
t+1, .., B

i
t+T ). Following the standard proce-

dure [29, 56] we rank the predicted boxes Bt+l, l∈{0, .., T}
based on their overlap with the ground truth boxes B∗

t+l at
each frame t+l. We associate each of the N predicted boxes
with the best matching IoU score of the ground truth box.

3.2. Trajectory loss

Bag of boxes loss. We want to optimize for each object
indexed by i its associated trajectory, starting at keyframe t:
Ti
t. For readability, we ignore the index i from here on. The

Figure 3. Object trajectories are piecewise continuous: i.e. an ob-
ject cannot disappear between two neighboring frames t and t+1.
We incorporate this continuity by noting that the loss between a
box Bt+l along the trajectory and its associated ground truth B∗

t+l

is defined as the sum of pairwise offsets of neighboring boxes,
δt+l, starting from the keyframe box Bt. The orange line is the
true trajectory and the green line is the predicted trajectory. (Here,
for simplicity we discard the width and height of the bounding
boxes and only show (x, y) coordinates and depict l∈{1, .., 4}.)

standard loss Lbag for performing box regression, considers
the trajectory boxes as an unordered bag and computes a
smooth L1 loss L1(·) [20, 56], for each predicted box Bt+l,
to its associated ground truth box B∗

t+l:

Lbag(B
∗, {Bt, .., Bt+T }) =

T∑
l=0

L1(B
∗
t+l −Bt+l). (1)

Trajectory cumulative loss. The downside of Eq. (1) is
that it treats each prediction Bt+l as if it were independent
of its neighboring predictions along the trajectory, Bt+l−1

and Bt+l+1. Therefore, there is no temporal ordering en-
forced in the Lbag loss. Not enforcing the ordering of the
predictions along the trajectory could lead to discontinu-



ous trajectories. We want to enforce smoothness in the
predictions over time: objects cannot disappear or appear
at random locations, between neighboring frames. Specif-
ically, the trajectory is piecewise continuous: for an object
to move from a location Bt+1 to a location Bt+4 it has to
travel through the intermediate locations Bt+2 and Bt+3, as
illustrated in Fig. 3.

To add this insight, we define a loss that constrains the
pairwise offsets along the trajectory from frame t up to ev-
ery frame t+l: δt+k=(Bt+k−Bt+k−1), k∈{1, .., l}, to add
up to the offset from the ground truth at the frame t+l to the
keyframe prediction (B∗

t+l−Bt). Concretely:

L∑(B∗,
←→
Tt ) =

T∑
l=0

L1

((
B∗

t+l −Bt

)
−

l∑
k=1

δt+k

)
, (2)

where we redefine the trajectory to predict δt+l values de-
scribing pairwise offsets instead of bounding boxes:

←→
Tt =

(δt+1, .., δt+T ). Additionally, we ignore the calculation of
the coordinates, if the ground truth bounding boxes B∗

t+l are
not valid in Eq. (2). Note, that if we would predict bound-
ing boxes Bt+l in the trajectory network, instead of offsets
between pairs of bounding boxes δt+l, Eq. (2) would reduce
to Eq. (1) and the temporal ordering would not be enforced
(See the derivation in the supplementary material).

In Eq. (2) the inner loop over pairwise offsets δt+k accu-
mulates the errors in the predictions over time from frame
t+1 to frame t+l. To make sure the errors do not accu-
mulate along the trajectory, and the change from frame to
frame is smooth, we add another loss Lbag(δ) constraining
the pairwise offsets δt+l at every timestep t+l to map back
to ground truth offsets: δ∗t+l=(B∗

t+l−B∗
t+l−1):

Lbag(δ)(B
∗,
←→
Tt ) =

T∑
l=1

L1

(
δ∗t+l − δt+l

)
. (3)

Our final loss Ltraj is then a combination of the two losses
where the cumulative trajectory loss L∑ enforces piece-
wise continuity in the predictions and the bag of offsets loss
Lbag(δ) discourages errors from accumulating along the tra-
jectory and makes the trajectory smooth:

Ltraj = L∑ + Lbag(δ). (4)

We investigate the effect of each loss term in the experimen-
tal section, together with the effect of predicting offsets δt+l

instead of box coordinates Bt+l in the trajectory network.

Sparse annotation loss. When there are no annotations
in-between keyframes then we cannot optimize the antic-
ipated trajectory. Since the task in the sparse annotation
cases is object detection on annotated keyframes, we can
hypothesize that the precise true location of an object along

a trajectory B∗
t+l, is not essential, as long as the trajec-

tory is piecewise continuous and smooth, and the start-
ing and ending points of the trajectory are known. There-
fore, we can rewrite our losses in Eq. (4) to a sparsely-
annotated variant L(sa)

traj by changing the way in which we
define the box-supervision. Explicitly, we replace the set
of ground truth boxes {B∗

t , B
∗
t+1, ..B

∗
t+T } with a pseudo

box-trajectory. The pseudo-box trajectory is defined by a
continuous function, rt(·) describing the trajectory at every
timestep as: Trt=(B∗

t , rt+1(B
∗
t ), ..rt+T (B

∗
t )), relative to

the true keyframe location B∗
t . Because the next keyframe

is the last trajectory location, we also constrain the pseudo
trajectory to match the true bounding box at the end of the
trajectory: rt+T (B

∗
t )=B∗

t+T .
In practice, we choose rt(·) to be either linearly inter-

polated box annotations, or a parabola as it is continuous
and does not assume linear object trajectories. Here, we
only need bounding-box annotations every T frames, for
correcting the starting- and end-point of our predicted tra-
jectory. Our sparsely-annotated loss L(sa)

traj variants are useful
when the dataset only has sparse annotations available.

4. Experiments
Datasets and evaluation setup. We test our hypotheses on
a fully controlled MovingDigits dataset. We ablate model
choices on a subset of ImageNet VID [57]. We show the
practical benefits of our approach on the full ImageNet
VID [57] and on EPIC KITCHENS-55 [11]. As a realis-
tic sparsely annotated scenario, we evaluate on YouTube-
BoundingBoxes [55] which has approximately 1 keyframe
annotation per second, and the Waymo Open dataset [14].
For the ImageNet VID experiments, we train our model on a
combination of ImageNet VID and DET datasets as is com-
mon practice in [9, 23, 71, 79]. To quantify detection ac-
curacy we adopt the common approach [7, 9, 69, 71] by
computing mean Average Precision (mAP), where a detec-
tion is correct if its Intersection over Union (IoU) with the
ground truth is sufficiently large. Note that although our
method samples keyframes during training, we evaluate on
all frames at test time, unless stated otherwise.
Implementation details. We test either using a Faster
RCNN [56] detector or a Deformable DETR [78] with an
ImageNet pre-trained ResNet [30] or SwinB [47] base as the
object detection backbone. Our trajectory prediction sub-
network contains three fully-connected layers with 1024 di-
mensions for the middle layer, see Fig. 2. We train our net-
work for 120k iterations on ImageNet VID and 173k itera-
tions on Epic Kitchens with the SGD optimizer, on 4 GPUs.
For ImageNet VID, the initial learning rate is 10−3 and is
divided by 10 at 80K iterations. For Epic Kitchens, the ini-
tial learning rate is 5 × 10−4 and is divided by 10 at 120K
iterations. For YouTube-BoundingBoxes, the initial learn-
ing rate is 5× 10−4 and is divided by 10 at 100k iterations.



Input frame GT Bbox Predicted Bbox

t t : t+3 t : t+3

Figure 4. [H1]: Trajectory anticipation on MovingDigits.
We show a single static input frame of digits 6 and 4 and their
time-accumulated ground truth and predicted bounding boxes in
timesteps t : t+3. Each digit class has an associated linear motion
(green arrow). The match of our predicted bounding boxes and
the ground truth bounding boxes shows that our model can predict
trajectories from a static frame.

4.1. Hypothesis testing

We test our hypotheses by creating our own fully con-
trolled dataset, MovingDigits, where we pair each of the
10 MNIST digit classes with a unique, linear motion of 2
px per frame, see Fig. 4. Each video has 32 frames with a
frame size of 64×64 px. We created 200 videos for training
and 80 videos for testing, with an equal number of videos
per class. We use a trajectory length of T=8, train for 1.25k
iterations and use a ResNet-18 feature extractor and a Faster
RCNN detector. We cannot use the existing MovingMNIST
[61] because it does not provide detection bounding boxes,
and it does not contain motion-appearance correlations.

[H1]: Can the model anticipate motion trajectories? To
verify if our model can anticipate trajectories from a single
static input frame t, we train on our MovingDigits, where
each digit has its own linear motion. We calculate the av-
erage IoU over the predicted trajectories for the test videos.
The IoU is 0.95, which is near-perfect compared to the IoU
of 0.79 for no motion anticipation. We show an example of
the predicted bounding boxes (Bbox) by our method and the
ground truth bounding boxes (GT Bbox) from time steps t
to t+3 in Fig. 4. Our model can successfully learn motion
by anticipating trajectories from a static input frame.

[H2]: Anticipating improves static detection. The mo-
tion cues in-between the static keyframes offer an additional
source of supervision. Here, we investigate how the mo-
tion anticipation affects the static object detector, when we
evaluate at test-time only on keyframes. We consider four
types of motion supervision for predicting box trajectories:

Motion Keyframe mAP (%)

Randomized positions 62.68
No motion 73.51
Simulated smooth motion 76.57
Annotated motion 79.31

Table 1. [H2] Influence of motion anticipation on static object
detection. Static keyframe detection mAP on MovingDigits for
varying motion type supervision. For non-random motions, antic-
ipating motion improves static object detection at keyframes.

(1) Ground truth motion: trained on true bounding-box tra-
jectories annotated at every frame; (2) Simulated smooth
motion: bounding boxes move between keyframes accord-
ing to a smooth parabola. (Details and examples are in the
supplementary material); (3) Randomized positions: there
is motion, but it is not smooth, the boxes in-between the
keyframes can occur at any random position in the image;
(4) No motion: without motion prediction, i.e., the static
object detector baseline trained at every video frame.

Tab. 1 shows the keyframe mAP scores for IoU@
[0.50:0.05:0.95]. The No motion static object detector is the
baseline, which uses no motion. The Randomized positions
as supervision is detrimental for object detection because
the motion is random, and unpredictable. Interestingly, both
Ground truth motion and Simulated smooth motion super-
vision improve the static keyframe detection. We speculate
that the anticipation loss encourages detecting static regions
that are most likely to move coherently, with consistent mo-
tion offsets: i.e. same direction. Thus, for non-random mo-
tions, adding motion anticipation as additional supervision
improves static object detection at keyframes, even without
knowing the ground truth motion between the keyframes.

4.2. Ablation of model components

We run all ablation experiments on an ImageNet VID
[57] subset containing the classes ‘dog’, ‘giant panda’, and
‘hamster’. We use a ResNet-101 for feature extraction and
Faster RCNN for detection.

[A1]: The effect of the trajectory loss. We evaluate each
term in our trajectory loss Ltraj = L∑+Lbag(δ) in Eq. (4),
compared to the standard loss Lbag in Eq. (1). The mAP
scores for trajectory lengths T=4 and T=8 are in Tab. 2.
The Ltraj loss has a higher mAP than the bag loss Lbag
for both trajectory lengths. Ltraj enforces continuity and
smoothness in the predictions over time thus leads to more
precise predictions. Furthermore, the improvement of Ltraj
over Lbag is larger for longer trajectories, e.g. for T=4
and T=8, Ltraj outperforms Lbag by 1.66% and 2.18% re-
spectively. Our Ltraj loss is defined using offsets, without
offsets the L∑ would be equivalent to Lbag. We observe
that the effect of predicting offsets between neighboring
boxes δt+l, instead of bounding-box coordinates Bt+l gives



Trajectory length (mAP %)

Loss T=4 T=8

Lbag 87.54 ± 0.16 83.97 ± 0.71

L∑ 87.95 ± 0.27 84.09 ± 0.67
Lbag(δ) 85.19 ± 0.66 79.73 ± 1.01
Ltraj 89.20 ± 0.21 86.15 ± 0.75

Table 2. [A1]: Loss choice. Compared to Lbag, the Lbag(δ) loss
does worse, whereas L∑ performs on par. Their combination in
Ltraj = L∑+Lbag(δ) outperforms Lbag. Predicting offsets instead
of bounding-box coordinates in the trajectory network gives better
results. These patterns are consistent over both trajectory lengths.

Keyframe mAP%

Ltraj
Sparse annotation loss

L(sa)∑ L(sa)
bag(δ) L(sa)

traj

T=4 91.03 ± 0.19 90.35 ± 0.34 74.61 ± 0.72 90.76 ± 0.26
T=8 87.94 ± 0.66 86.98 ± 0.73 68.76 ± 0.99 87.12 ± 0.69

Table 3. [A2]: Sparse annotation loss analysis. We sub-sample
keyframes of the fully annotated ImageNet VID subset to mimic
the sparse annotations, and evaluate our sparse annotation loss on
keyframe detection. The L(sa)

bag(δ) does not improve the detection

accuracy, while L(sa)∑ performs on par with the L(sa)
traj . The sparse

annotation loss achieves a comparable accuracy on keyframe de-
tection with our fully-supervised loss Ltraj.

an improvement of 0.81% and 0.89%. When considering
Lbag(δ) or L∑ individually, their mAP is lower or on par
with Ltraj. This is because Lbag(δ) cannot enforce trajectory
continuity, while L∑ cannot ensure that trajectories do not
diverge by accumulating errors over time. Predicting offsets
instead of box coordinates results in better accuracy.

[A2]: The effect of the sparse annotation loss. We test our
model using the L(sa)

traj loss for sparse annotations. To eval-
uate this in a controlled setting, we sub-sample keyframe
annotations from the fully annotated ImageNet VID subset
to mimic a sparse annotation scenario, and evaluate only on
keyframes. We compare the ground truth motion with the
result of anticipating linearly interpolated trajectories be-
tween keyframes. Tab. 3 shows that the L(sa)

bag(δ) does not
contribute much for the keyframe detection. This is because
L(sa)

bag(δ) constrains the predicted offsets to match the pair-
wise offsets of the pseudo trajectory at every frame, which
is not useful here since the motion is simulated. The L(sa)∑
performs on par with the L(sa)

traj . And the keyframe detection
accuracy with the sparse annotation loss L(sa)

traj is close to that
with the proposed fully-supervised loss Ltraj.

[A3]: Inference speed vs. accuracy trade-off. We can
control the inference speed by sampling fewer keyframes,
and thus predicting longer trajectories. We analyse the
speed vs. accuracy trade-off of our method on the subset
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Figure 5. [A3] Inference speed vs. accuracy trade-off. We
can increase inference speed (FPS) by sampling fewer keyframes
and predicting longer trajectories. Yet, by increasing trajectory
length the mAP decreases. The trajectory length can be selected
according to the needed speed-accuracy trade-off.

of ImageNet VID. Fig. 5 shows we can reach an mAP of
89.2% with a runtime of 39.6 FPS. Moreover a noticeable
drop in mAP occurs at trajectories longer than 10 frames.
However, when the trajectory is too long, the object motion
may vary or the object may leave the frame or a new object
may enter the frame. These changes result in the decrease
of our model’s performance. The trajectory length can be
chosen according to the desired speed-accuracy trade-off.

4.3. Comparison with state-of-the-art

[C1]: Experiments on ImageNet VID. We compare our
method with state-of-the-art video object detection meth-
ods on ImageNet VID in Tab. 4. We mark methods with-
out post-processing with ✓. Methods with post-processing
add extra computational cost. Our method does not use any
post-processing. We use a prediction trajectory of length
T=4, as this already gives a considerable reduction in com-
putation speed. For our model, we test using a ResNet-101
[30] and a SwinB [47] backbone with either a Faster RCNN
[56] or a Deformable DETR [78].

Among all methods using a ResNet-101 backbone, our
method is the most accurate with a 87.2% mAP, which has
a 2.7% improvement over the leading MEGA [7]. We also
report runtime (FPS) and train-time (hrs/epoch) to show that
our method is fast and efficient. We measure the efficiency
using the code provided by the original papers, and where
the code is not available we mark this with ‘-’. Note that
for the training time this is a rough estimate, when consid-
ering the same settings (batch-size, GPU) for all methods.
We tested the inference runtime speed on a single NVIDIA
GTX 1080 Ti. In terms of both training time and runtime
our method is most efficient. Our method has fast inference
time with 39.6 FPS, which is ≈ 1.8× faster than existing
fast methods like LWND [35] and ST-Lattice [6]. Our effi-



Methods Backbone No Post- mAP (%) Train-time Runtime
proc. (hrs/epoch) (FPS)

Faster-RCNN [56] R101 ✓ 73.6 1.55 21.2
LWND [35] R101 ✓ 76.3 - 20.0
FGFA [79] R101 78.4 6.59 5.0
THP [77] R101+DCN ✓ 78.6 - -
ST-Lattice [6] R101 79.6 1.40 20.0
D&T [17] R101 80.2 6.56 5.0
MANet [69] R101 80.3 6.88 4.9
STSN [5] R101+DCN 80.4 - -
STMN [72] R101 80.5 2.49 13.2
TROI [21] R101 80.5 5.18 6.4
SELSA [71] R101 80.5 3.15 10.6
OGEMN [12] R101+DCN 81.6 - 8.9
SparseVOD [28] R101 ✓ 81.9 - 14.4
BoxMask [27] R101 ✓ 83.2 - 6.1
RDN [13] R101 83.8 - -
HVRNet [23] R101 83.8 - -
TF-Blender [9] R101 ✓ 83.8 - 4.9
MEGA [7] R101 84.5 6.34 5.3

TransVOD [76] R101 ✓ 81.9 - 32.3(Def. DETR)
PTSEFormer [68] R101 ✓ 88.1 - -(Def. DETR)
TransVOD [76] SwinB ✓ 90.1 - 14.9(Def. DETR)

Ours (Faster RCNN) R101 ✓ 87.2 0.78 39.6
Ours (Def. DETR) R101 ✓ 87.9 - 36.4
Ours (Def. DETR) SwinB ✓ 91.3 - 18.1

Table 4. [C1]: Experiments on ImageNet VID. We indicate the
methods without video-level post-processing with a ✓. ‘No Post-
proc.’ means no post-processing. R101 here is ResNet-101. The
runtime is measured on a NVIDIA GTX 1080 Ti. Our method has
the best performance and fastest runtime among all the methods
using two-stage detectors (e.g. Faster RCNN). With a stronger
detector and backbone, our method exceeds state-of-the-art.

ciency comes from predicting object locations for the next
T frames, while processing only sub-sampled keyframes.

Because our method is detector agnostic, we also com-
pared our method with methods using a more advanced de-
tector, Deformable DETR [78], and a more advanced back-
bone SwinB [47]. In Tab. 4 our method is on-par with PT-
SEFormer [68] using the Deformable DETR detector and
R101 backbone. And our method outperforms overall the
state-of-the-art, when using a SwinB backbone.

Comparison on different motion speeds. We evaluate
across different motion speeds in Tab. 5. The category of
object motion speeds in ImageNet VID follows FGFA [79].
Our method improves mAP on slow and medium motion
speeds and achieves comparable results to the previous best
method on fast motion speed, which shows the effectiveness
of our method across different motion speeds.

[C2]: Experiments on EPIC KITCHENS-55. In EPIC
KITCHENS-55, each frame contains avg/max 1.7/9 objects,
which is more challenging compared to ImageNet VID. The
Epic Kitchens video object detection task consists of 32 dif-
ferent kitchens and 290 classes. The training set has 272

Methods Backbone mAP (%) mAP (%) mAP (%) mAP (%)
(slow) (medium) (fast)

FGFA [79] R101 78.4 83.5 75.8 57.6
MANet [69] R101 80.3 86.9 76.8 56.7
SELSA [71] R101 80.5 86.9 78.9 61.4
OGEMN [12] R101+DCN 81.6 86.2 78.7 61.1
HVRNet [23] R101 83.8 88.7 82.3 66.6
IFFNet [37] R101 79.7 87.5 78.7 60.6

Ours (Faster RCNN) R101 87.2 92.2 86.1 66.5

Table 5. [C1]: ImageNet VID across different motion speeds.
Our method improves mAP on different motion speeds.

S1 S2

Methods mAP@.5 mAP@.75 mAP@.5 mAP@.75

EPIC [11] 34.2 8.5 32.0 7.9
Faster-RCNN [71] 36.6 9.9 31.9 7.4
SELSA [71] 37.9 9.8 34.8 8.1
SELSA-ReIm + TROI [21] 42.2 - 39.6 -
BoxMask [27] 44.3 18.5 41.3 15.7

Ours (Faster RCNN) 44.9 18.7 41.7 16.0

Table 6. [C2]: Experiments on EPIC KITCHENS-55. S1 and
S2 represent Seen and Unseen splits, respectively. Our method
achieves promising results for both test sets and IoU thresholds.

video sequences captured in 28 kitchens. For evaluation,
106 sequences collected in the same 28 kitchens (S1) and
54 sequences collected in 4 other unseen kitchens (S2) are
used. We use a prediction trajectory length of T=4 and
evaluate for two IoU thresholds of 0.5 and 0.75. As summa-
rized in Tab. 6, our method is more accurate than previous
state-of-the-art methods for both Seen/Unseen splits. Our
method is applicable to complex video detection tasks.

4.4. Sparsely annotated videos

[S1] Sparsely annotated YouTube-BoundingBoxes. The
YouTube-BoundingBoxes dataset [55] has sparse annota-
tions: the video frame rate is 30 fps, and on average it
only has annotations at 1 fps. We compare to the Faster
RCNN [56] on YouTube-BoundingBoxes in Tab. 7, when
using a Faster RCNN detector in our method. The inputs
are keyframes sampled with a step 60 and 30, which is
every 60 frames and 30 frames in the video, respectively.
During training, for Faster RCNN we use the labels at the
keyframes, while for our method we use labels with either
a step of 30 or 1. For a label step of 30 and a keyframe
step of 60, we use 2× more labels than input frames, while
for a label step of 1 and keyframe step of 30, we use 30×
more labels than frames. Since the video annotations are
sparse, we do not have labels at every frame, therefore for
a label step of 1, we use our sparse annotation loss, L(sa)

traj .
In the L(sa)

traj we define the box trajectories to be linearly in-
terpolated pseudo trajectories. For keyframes sampled with
a step of 60, our method has higher accuracy than Faster
RCNN by using 2× more labels and processing the same



Methods Keyframe Label mAP (%)step step

Faster RCNN [56] 60 60 47.6
Faster RCNN [56] 30 30 58.7

Ours Ltraj 60 30 51.3

Ours L(sa)
traj 30 1 59.8

Table 7. [S1] Sparsely annotated YouTube-BoundingBoxes.
mAP on the sparsely annotated YouTube-BoundingBoxes. The
sparse annotation loss L(sa)

traj using interpolated pseudo trajectory
labels improves keyframe detection.

Methods AP/L1 (%) AP/L2 (%)

Faster RCNN 55.66 49.63

Ours L(sa)
traj 64.53 59.28

Table 8. [S2]: Experiments on the Waymo Open dataset. We
report average precision over the L1 and L2 instance difficulty
levels. Even when learning from object annotations at 1 fps,
our method using interpolated pseudo-trajectories outperforms the
Faster RCNN baseline.

input keyframes. With input keyframes every 30 frames,
our method achieves a 1.1% higher mAP than Faster RCNN
while optimizing a simulated motion between these frames.

[S2] Results on Waymo Open Dataset. We are the first to
perform video object detection on the Waymo Open dataset
[14], and thus we can only compare to a static detector,
Faster RCNN [56]. We use a Faster RCNN detector as well
in our method, and the sparse annotations loss with linearly
interpolated pseudo-trajectories. The Waymo Open dataset
contains sparse object annotations at 1 fps. Nonetheless, the
results in Tab. 8 show that we outperform Faster-RCNN.

4.5. Method limitations

Despite our method’s successful predictions as in
Fig. 6(a), we also identify several limitations. In practice,
multiple motion patterns can be associated with the same
appearance: e.g people can walk or jump. In this case, our
method may fail to predict the correct object locations. An-
other failure case is if objects appear or disappear in the
middle of a trajectory. In these cases, we will either miss
the objects or over-predict. Yet another limitation of our
method is the assumption that the motion changes smoothly.
If the object trajectories have large variations in a short time
because of the video frame rate, our trajectory network may
not be able to learn this. One such example is the dog
in Fig. 6(b) which suddenly changes its moving direction.
Even if we miss some detections of intermediate frames,
as shown in Fig. 6(b), our method can recover at the next
keyframe detection. While these limitations exist, they only
influence our method minimally, since we miss only a few
hundred milliseconds, which is reflected in our state-of-the-
art video object detection results.

(a) Success case (b) Failure case

Figure 6. Example predictions. White boxes are the ground truth,
blue boxes are the predictions. We show one success case in (a)
a ‘dog’ running. In (b) the failure case shows a ‘dog’ suddenly
changing direction. We miss the detection in the second and third
frames, yet we recover at the keyframe detection. When the mo-
tion has large variations, is unpredictable, and objects enter and
leave the frame, our method fails.

5. Conclusion

We propose a method to efficiently detect objects in
videos by predicting their future locations from a static in-
put keyframe and the ground truth locations of all frames.
Our method associates appearance with motion. Different
motion contexts have different appearances, thus we can
model various motion patterns from the keyframes with dif-
ferent appearances. Because we predict the future object
locations over multiple frames, we do not need to process
every frame of the video, but only a subset of the keyframes,
which makes our method efficient. Moreover, by learning to
predict object trajectories we improve the object detection
accuracy when compared to the state-of-the-art on multiple
datasets. Finally, by using pseudo object trajectories defined
by smooth continuous functions, we can improve object de-
tection accuracy on sparsely annotated videos.
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Supplementary Material

A. Derivation for loss equivalence

In this appendix section, we provide the derivation to
show that if we would predict bounding boxes Bt+l in
the trajectory network, instead of offsets between pairs of
bounding boxes δt+l, Eq. (2) would reduce to Eq. (1) and
the temporal ordering would not be enforced.

If we predict bounding boxes Bt+l and use δt+k =

(Bt+k − Bt+k−1), k ∈ {1, .., l}, the sum
∑l

k=1 δt+k can
be rewritten as follows:

l∑
k=1

δt+k =

l∑
k=1

(Bt+k −Bt+k−1),

=

l∑
k=1

(Bt+k)−
l∑

k=1

(Bt+k−1),

=

l∑
k=1

(Bt+k)−
l−1∑
k=0

(Bt+k),

=

l−1∑
k=1

(Bt+k) +Bt+l −
l−1∑
k=1

(Bt+k)−Bt,

= Bt+l −Bt.

And we fill the above in Eq. (2). Then we have,

L∑(B∗,
←→
Tt ) =

T∑
l=0

L1

((
B∗

t+l −Bt

)
−

l∑
k=1

δt+k

)
,

=

T∑
l=0

L1

(
B∗

t+l −Bt −
l∑

k=1

δt+k

)
,

=

T∑
l=0

L1

(
B∗

t+l −Bt −Bt+l +Bt

)
,

=

T∑
l=0

L1

(
B∗

t+l −Bt+l

)
.

which is the same as Eq. (1):

Lbag(B
∗, {Bt, .., Bt+T }) =

T∑
l=0

L1(B
∗
t+l −Bt+l).

B. Details for the Simulated smooth motion

In this section, we describe how we create the Sim-
ulated smooth motion: bounding boxes move between
keyframes according to a smooth parabola, and the change
of width and height is linearly interpolated. Given the cen-
ter points of two keyframe digits (xt, yt) and (xt+T , yt+T ),
we choose the focus F = (0, f), f = 8 for the parabola,

then the parabola can be written as,

y =
1

4f
x2 − v1

2f
x+

v21
4f

+ v2, (5)

where the vertex is V = (v1, v2). By filling in (xt, yt) and
(xt+T , yt+T ), we can get the value of v1, v2. For every pair-
wise neighbouring keyframes, we can have a parabola that
acts as a simulated smooth trajectory for intermediate loca-
tions of digits. Here we show an example of having four
keyframes and the simulated smooth motion as a parabola
in Fig. 7. Because the digits move linearly in MovingDigits
dataset, the digits of the keyframes stay on a linear line. We
choose the focus of every second parabola sequence to be
F = (0,−8) to make all the parabola trajectories smoothly
connected.
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Figure 7. An example of simulated smooth motion generated by
parabola functions. The parabola represents the trajectory of inter-
mediate digit locations between every two keyframes. The simu-
lated motion is smooth and continuous.


