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ABSTRACT

Knowledge distillation compacts deep networks by letting a
small student network learn from a large teacher network. The
accuracy of knowledge distillation recently benefited from
adding residual layers. We propose to reduce the size of the
student network even further by recasting multiple residual
layers in the teacher network into a single recurrent student
layer. We propose three variants of adding recurrent connec-
tions into the student network, and show experimentally on
CIFAR-10, Scenes and MiniPlaces, that we can reduce the
number of parameters at little loss in accuracy.

Index Terms— Knowledge distillation, compacting deep
representations for image classification, recurrent layers.

1. INTRODUCTION

Deep learning requires deep computational pockets. Cur-
rent models for image classification [1, 2], object detec-
tion [3, 4], semantic segmentation [5, 6] use millions of
parameters. The memory requirements of such large models
prevent real-world applicability in limited memory scenarios
such as surveillance, home safety devices, industrial robots,
autonomous driving, etc. In this paper we investigate low-
memory approximations of high-accuracy models.

Knowledge distillation [7, 8] exploits large teacher mod-
els to help train student models that are more compact yet
retain good accuracy. Recent methods use thin yet deep stu-
dents [9], reaping the benefits of residual layers [1] to train ex-
tremely deep architectures. For training such deep networks,
the teacher-student similarity losses are computed at similar
depths in the architecture [10, 9], requiring student models to
have similar depths as their teachers.

In this paper we propose to further reduce the parameters
of deep student networks by sharing weights between resid-
ual layers. We are inspired by residual learning seen as an
iterative refinement scheme [11], and that multiple residual
connections can be seen as an iterative recurrent connection
“unrolled” over time [12, 13, 14]. We propose the use of re-
current connections for compacting the information of mul-
tiple residual layers of the teacher network into a single re-
current layer in the student model. In Fig 1 we illustrate our
approach. We make the following contributions: (i) student

Fig. 1. Multiple residual layers in the teacher network (left) are
mapped to a single layer in the student network (right) through re-
currence. The L2 measures similarity between networks, and similar
colors correspond to similar layers between networks. Note the re-
duction in layer parameters.

memory reduction by using recurrent connections instead of
residuals; (ii) exploring three variants of adding recurrence;
(iii) experiments on CIFAR-10, Scenes and MiniPlaces show
substantially reduced parameters with similar accuracy.

2. RELATED WORK

Knowledge distillation. Knowledge between multiple modal-
ities [15] can be transferred. Doing the opposite of our aim,
[16] trains a deep architecture from a recurrent language
model, while [17, 18] improve time and accuracy, rather than
reducing parameters. In contrast to these works, we aim
at parameter reduction by training a low-parameter student
network from a parameter-intensive residual teacher network
through the use of recurrent connections.

Time efficiency. Extremely deep networks can be trained effi-
ciently by controlling the information flow through the use of
multiple interconnections between layers and gating [19, 20].
While in [21] speedups are obtained by pruning convolutional
kernels in a group-wise fashion. The work in [22] uses shal-
lower wider neural networks for training time efficiency. Un-
like these methods, we do not focus on improving the speed,



(a) Original. (b) RERESNET-1 (c) RERESNET-2 (d) RERESNET-3

Fig. 2. Our three proposed variants for the student models together with the original block. We display without color the units that are not
tied over time and in the same color (yellow or blue) the units that share parameters over time. (a) The original residual blocks, each with
two BRC (BN-RELU-Conv) units inside. (b) RERESNET-1: both units are tied over time in an interleaved fashion: the first one (in yellow)
is tied at t ∈ {1.., 2n+ 1}, and the second (in blue) at t ∈ {2.., 2n}. (c) RERESNET-2: the two BRC units broken apart, each being shared
sequentially: the first one (in yellow) is tied at t ∈ {1.., n}, and the second (in blue) at t ∈ {n + 1.., 2n}. (d) RERESNET-3: the two BRC
units are collapsed into a single unit, shared at t ∈ {1.., n}. Where n denotes the number of recurrence steps.

but on substantially reducing the number of parameters.
Memory efficiency. Network parameters can be compressed
through low-rank and sparse decomposition of weight matri-
ces [23, 24]. Alternatively, binarization [25, 26] can reduce
memory usage at the expense of a small drop in performance.
Others exploit circular matrices in the Fourier domain for pro-
jecting the network feature maps for dimensionality reduc-
tion [27, 28]. Our method is intended to benefit before such
approximations are applied. We train a low-parameter student
network to mimic as closely as possible a parameter-intensive
teacher network.

3. METHOD

3.1. Recurrent ResNet for knowledge distillation

Given a residual block i, with a corresponding mapping func-
tion, fi(·), and weights Wi, the output of its application,
f̂i(·), to its input feature map, xi−1, is defined [1] as:

xi = f̂i(xi−1,Wi) = fi(xi−1,Wi) + xi−1. (1)

All the feature maps in one residual block have the same
width and height, therefore, the same spatial scale. We de-
fine a recurrent unit at time t > 1, by sharing the weights at
the same spatial scale in the residual block.

xi(t) = f̂i(xi(t− 1),Wi), (2)

where the feature maps xi, become a function of time, t.
Each residual block of a ResNet architecture [1] consists

of two BRC units, composed of: batch normalization (BN),

rectified linear units (RELU), and a convolution (Conv). We
coin our recurrent residual model: RERESNET. Starting from
a residual teacher network [1], we consider all three different
possibilities of adding recurrence into the student network, by
recurring both BRC units in a residual block. Fig 2 illustrates
these three variants of the student model.

ReResNet-1: interleaved parameter tying. The first unit is
tied over odd timesteps, t = 2n+ 1, and therefore its associ-
ated weights are shared over these timesteps. The second unit
in the block is tied over even timesteps t = 2n, where n is the
number of recurrence steps considered. See Fig 2(b).

ReResNet-2: sequential parameter tying. The first unit
is tied over the timesteps t = {1, .., n}, and their weights are
shared over those timesteps. While the second unit is tied over
timesteps t = {n+ 1, .., 2n}. See Fig 2(c).

ReResNet-3: single unit with shared weights. Collapsing
the two BRC units to only one unit with shared weights which
is then recurred over time t = {1, .., n}. See Fig 2(d).

3.2. Incorporating the teacher-student similarity loss

Our loss L(x, {Ws}) over the input data x and network pa-
rameters of the student model, Ws, is a combination of the
softmax classification loss, Lcls, and the teacher-student sim-
ilarity loss, Lts:

L(x, {Ws}) = Lcls(x, {Ws}) + λLts(x, {Ws,Wt}), (3)

where the weights of the teacher model Wt, are fixed, and
λ is the trade off parameter between the two losses. The



teacher-student similarity loss Lts, is the L2 distance between
the teacher-student activations at a set of layer pairs, K:
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where N and M are the number of channels in the student
and teacher feature maps, respectively. To allow for different
number of channels between the teacher network and the stu-
dent network, the squared values of the feature maps in the
two networks are first accumulated over the channels as in
[9], and subsequently, the feature maps are normalized.

3.3. Implementing recurrence and shared gradients

We implement recurrence by sharing the parameters of the
convolutional layers, allowing each depth to learn its own BN
(Batch Normalization) parameters. We do so, as we have
found experimentally there is a considerable drop in perfor-
mance when sharing also the BN parameters.

Since we can only recur over convolutional layers with
the same spatial size, we add one extra convolution between
recurrent residual blocks with different spatial sizes. During
backpropagation, each shared residual mapping function f̂i(·)
as given in Eq. (2), at each time t, will give an associated gra-
dient for the weights to be learned in that layer, ∂Ws

i (t). As
in [29], we update the shared weights of the student network
in one layer, Ws

i , with the sum of all the gradients across all
time steps, t.
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∂Ws
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where L(x, {Ws}) is our final loss as given in Eq. (3), and n
is the number of recurrence steps for that recurrent BRC unit.

4. EXPERIMENTAL EVALUATION

4.1. Experimental analysis

For all experiments we standardize the data by translating it
to mean zero and scaling it to unit standard deviation. We
use a weight decay of 1.0e − 5 and momentum of 0.9 and
initialize the weights following [30].

CIFAR-10 [31]. We first evaluate our model on CIFAR-10
using the WRN-18-2 model from [22] with a wide residual
teacher model with 18 layers and 3 blocks and make the stu-
dent networks half as wide by using only half of the number
of filters in the convolutional layers. The teacher and student
models are trained from scratch using batch size 128. The
starting learning rate is 0.1 and is decreased by a factor of 10
every 40K iterations and 60K iterations. For data augmenta-
tion, following [1] we pad 4 pixels on each side, take random
crops and add random horizontal flips.

# Recurs Parameters Accuracy
% #

Teacher 100% 1.235 M 93.25%

1 6% 73 K 86.95%
2 6% 73 K 88.17%
3 6% 73 K 88.33%
4 6% 74 K 88.39%
5 6% 74 K 88.24%
6 6% 74 K 87.95%
12 6% 75 K 88.03%

Table 1. Exp. 1: The effect of recurrence on performance on
CIFAR-10. We test between 1 and 6 repetitions, and 12 repetitions
on our lightest student model: RERESNET-3. After 3-4 recurrences
performance is stable.

Network # Recurs Parameters Accuracy
% #

Teacher 100% 1.235 M 93.28%

RERESNET-1 3 10% 122 K 89.81%
RERESNET-2 3 10% 122 K 89.25%
RERESNET-3 3 6% 73 K 88.33%

RERESNET-1 6 10% 124 K 89.99%
RERESNET-2 6 10% 124 K 89.00%
RERESNET-3 6 6% 74 K 87.95%

Table 2. Exp. 2: Comparison of RERESNET-1, RERESNET-2
and RERESNET-3 on CIFAR-10 with 3 and 6 recurrences. Overall,
RERESNET-1 performs slightly better than the other two variants,
however there is not a significant difference in the performance of
the three considered models.

Exp. 1: How many times to recur? In table 1 we show the
effect of recurrence on accuracy using our smallest model,
RERESNET-3. For this experiment we do not use the teacher-
student similarity loss. Performance is stable to recurrence.
In our subsequent experiments we evaluate our models when
using 3 and 6 repetitions in the recurrent links.

Exp. 2: How to add recurrence? In table 2 we compare
our three proposed variants RERESNET-1, RERESNET-2,
RERESNET-3 on CIFAR-10 when using 3 and 6 recurrences.
Here we do not use the teacher-student similarity loss. The
RERESNET-1 performs slightly better than the other two vari-
ants while having an intuitive manner of adding recurrence:
the complete block is recurred, rather than each convolution
in the block separately. In the subsequent experiments we use
the RERESNET-1 model and refer to it as RERESNET.

Exp. 3: Comparison with existing work. Table 3 shows
the accuracy and number of parameters of our RERESNET∗,
enhanced with the teacher-student similarity loss, when com-



Network Parameters Accuracy
% #

Teacher 100% 1.235 M 93.28%

Maxout [32] >400% >5 M 90.62%
Prob. maxout [33] >400% >5 M 90.61%
FitNet [10] 200% 2.5 M 91.61%
Highway [19] 100% 1.25 M 91.20%
NIN [2] 78% 970 K 91.19%
Circulant CNN [27] 9.7% 120 K 84.29%

RERESNET∗ (3 recurs) 10% 122 K 90.29%
RERESNET∗ (6 recurs) 10% 124 K 90.49%

Table 3. Exp. 3: Comparison of performance and number of
parameters on CIFAR-10 for our RERESNET∗, enhanced with the
teacher-student similarity loss, when compared to other efficient
methods such as FitNets [10] and Circulant CNN [27], and other
large architectures such as NIN (Network in network) [2], Highway
networks [19], Maxout networks [32], and probabilistic Maxout net-
works [33]. Our method outperforms the Circulant CNN while hav-
ing a similar number of parameters, and performs on par with the
Maxout architectures [32, 33] while having 40× less parameters.

pared to popular network architectures.
We compare with Circulant CNN [27] which has a sim-

ilar size with our model, as well as the FitNet proposed in
[10]. We additionally compare with other larger models such
as NIN (Network in Network) [2], Highway networks [19],
Maxout network[32], and probabilistic Maxout network [33].
Our proposed approach outperforms 3 out of these 6 mod-
els considered. We outperform the Circulant CNN [27] while
having a similar number of parameters, and the two Maxout
models [32, 33] while using 40× less parameters.

4.2. Performance on scene recognition

To evaluate the generalization capacity of our method we
evaluate the performance of our RERESNET∗ enhanced with
the teacher-student similarity loss, on two scene datasets.

Exp. 4: Scenes [34]. Given the small dataset we use a shal-
lower but wider teacher model: a wide residual net from [22]
with width factor 4 and 12 layers, using only 2 residual blocks
rather than 3. Given the small dataset size, we extract features
from the last residual group of a pre-trained ResNet-50 [1] on
ImageNet [35] and train our teacher/student models on top
of that. Batch size is set to 128. The learning rates used are
0.01 for the first 2K iterations and 0.001 for the rest. Fol-
lowing [36], we resize the input images to 224×224 pixels.
Table 4 shows the performance on the Scenes dataset when
comparing our teacher performance with the performance of
our RERESNET∗ student architecture. We notice a 3% de-
crease in performance at the gain of more than 5× reduction
in parameters.

Network Parameters Accuracy
% #

Teacher 100% 23.64 M 71.80%

RERESNET∗ 18% 4.15 M 68.73%

Table 4. Exp. 4: On the Scenes dataset we lose 3% in accuracy at
for a more than 5 × gain in parameter usage.

Network Parameters Top-1 Top-5
% #

Teacher 100% 6.07 M 47.54% 76.82%

RERESNET∗ 33% 1.98 M 47.56% 77.42%

Table 5. Exp. 5: On Miniplaces the student performs similar to the
teacher while using 3× less parameters.

Exp. 5: MiniPlaces [37]. On MiniPlaces the teacher archi-
tecture corresponds to the standard residual network proposed
in [1], ResNet-34. Here the student model is as wide as the
teacher model. The teacher and student networks are trained
from scratch using batch size 256. We start with learning rate
0.1, and we decrease it by 10 every 70K and 160K itera-
tions. As input during training we use random image crops
of 112×112 pixels from the initial 128× 128 images. In ta-
ble 5 the performance on MiniPlaces is evaluated, where we
compare the teacher performance with the performance of our
RERESNET∗ student model. In this experiment we obtain the
same performance as our teacher model while using 3× less
parameters in our student model.

5. CONCLUSION

In this paper we focus on model parameter reduction by using
knowledge distillation for learning compact student models
from wider and deeper residual models. Our student mod-
els use recurrent connections for compacting the information
and allowing for shallow student networks. We propose three
variants of our student model, RERESNET-1, RERESNET-2
and RERESNET-3, in which the convolutional layers in the
residual blocks are tied over time in different manners. We
evaluate our model choices as well as compare with existing
work in terms of accuracy and used number of parameters,
and show experimentally that our models can achieve compa-
rable performance, using considerably less parameters.

One limitation of our approach is that recurrence is now
added simply through sharing parameters over time which
lacks in descriptive power. We believe improvements can
be obtained by using gating functions as in the case of
LSTM [38] blocks, to control the information remembered.
The student networks would benefit from this approach.
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