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Abstract

CNNs and computational models of biological
vision share some fundamental principles, which
opened new avenues of research. However, fruit-
ful cross-field research is hampered by conven-
tional CNN architectures being based on spatially
and depthwise discrete representations, which
cannot accommodate certain aspects of biolog-
ical complexity such as continuously varying re-
ceptive field sizes and dynamics of neuronal re-
sponses. Here we propose deep continuous net-
works (DCNs), which combine spatially continu-
ous filters, with the continuous depth framework
of neural ODEs. This allows us to learn the
spatial support of the filters during training, as
well as model the continuous evolution of fea-
ture maps, linking DCNs closely to biological
models. We show that DCNs are versatile and
highly applicable to standard image classification
and reconstruction problems, where they improve
parameter and data efficiency, and allow for meta-
parametrization. We illustrate the biological plau-
sibility of the scale distributions learned by DCNs
and explore their performance in a neuroscientifi-
cally inspired pattern completion task. Finally, we
investigate an efficient implementation of DCNs
by changing input contrast.

1. Introduction
Computational neuroscience and computer vision have a
long and mutually beneficial history of cross-pollination of
ideas (Cox & Dean, 2014; Sejnowski, 2020). The current
state-of-the-art in computer vision relies heavily on convolu-
tional neural networks (CNNs), from which multiple analo-
gies can be drawn to biological circuits (Kietzmann et al.,
2018). Thus, based on recent developments in deep learning,
there has been a growing trend to relate CNNs to biologi-
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cal circuits (Schrimpf et al., 2018), and employ CNNs as
models of biological vision (Zhuang et al., 2020a). Specif-
ically, recent advances in CNNs have enabled researchers
to learn more accurate models of the response properties
of neurons in the visual cortex (Klindt et al., 2017; Cadena
et al., 2019; Ecker et al., 2019), as well as to test decades old
hypotheses from neuroscience in the domain of computer
vision (Lindsey et al., 2019). Hence, links between CNNs
and biological models from neuroscience is fruitful for both
research fields.

Contrary to many biological models, feed-forward CNNs
typically use spatio-temporally discrete representations:
CNNs employ spatially discretized, pixel-based kernels,
and input is processed through a depthwise-discrete pipeline
made up of successive convolutional layers. To clarify,
within our framework we consider CNN depth to be anal-
ogous to time, similar to input-processing time-course in
biological models. Unlike CNNs, large-scale, neuroscien-
tific neural network models of the visual system often adopt
continuous, closed-form expressions to describe spatio-
temporal receptive fields, as well as the interaction strength
between populations of neurons (Dayan & Abbott, 2001).
Among others, such descriptions serve to limit the scope and
parameter space of a model, by utilizing prior information
regarding receptive field shapes (Jones & Palmer, 1987) and
principles of perceptual grouping (Li, 1998). In addition,
the choice of continuous—and often analytic—functions
help retain some analytical tractability in complex models
involving a large number of coupled populations. Our ap-
proach draws inspiration from such computational models
to propose continuous CNNs.

In this work we aim for a biologically more plausible CNN
model: We bring together (a) spatially continuous recep-
tive fields, where both the shape and the scale of the filters
are trainable in the continuous domain, and (b) depthwise
continuous representations capable of modeling the continu-
ous evolution of neuronal responses in feed-forward CNNs.
Continuous receptive fields provide a link between mod-
ern CNNs and large-scale rate-based models of the visual
system (Ernst et al., 2001). In addition, recent influential
work in deep learning has introduced neural ordinary dif-
ferential equations (ODEs) (Lu et al., 2018; Chen et al.,
2018; Ruthotto & Haber, 2019) which propose a continuous
depth (or time) interpretation of CNNs, while having spa-
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tially discrete filters. Such continuous depth models both
offer end-to-end training capabilities with backpropagation
which are highly applicable to computer vision problems
(e.g. by way of adopting ResNet blocks (He et al., 2016)),
as well as help bridge the gap to computational biology
where networks are often modelled as dynamical systems
which evolve according to differential equations. Building
on this, we introduce deep continuous networks (DCNs),
which are spatially and depthwise continuous in that the
neurons have spatially well-defined receptive fields based
on scale-spaces and Gaussian derivatives (Florack et al.,
1996) and their activations evolve according to equations of
motion comprising convolutional layers. Thus, we combine
depthwise and spatial continuity by employing neural ODEs
in a network which learns linear weights for a set of analytic
basis functions (as opposed to pixel-based weights), which
can also intuitively be parametrized as a function of network
depth (or time).

Our main contributions are: (i) We provide a theoretical
formulation of deep networks with spatially and depthwise
continuous representations, building on Gaussian basis func-
tions and neural ODEs; (ii) We demonstrate the applicability
of DCN models, namely, that they exhibit a reduction in
parameters, improve data efficiency and can be used to
parametrize convolutional filters as a function of depth in a
straightforward fashion, while achieving performance com-
parable with or better than ResNet and ODE-Net baselines;
(iii) We show that filter scales learned by DCNs are consis-
tent with biological observations and we propose that the
combination of our design choices for spatial and depth-
wise continuity may be helpful in studying the emergence
of biological receptive field properties as well as high-level
phenomena such as pattern completion; (iv) We explore, for
the first time, contrast sensitivity of neural ODEs and sug-
gest that the continuous representations learned by DCNs
may be leveraged for computational savings.

We believe DCNs can bring together two communities as
they both provide a test bed for hypotheses and predictions
pertaining to biological systems, and push the boundaries
of biologically inspired computer vision.

2. Deep Continuous Networks
2.1. Neuroscientific motivation

There is little doubt that modern deep learning frameworks
will be conducive to effective and insightful collaborations
between neuroscience and machine learning (Richards et al.,
2019). In particular in vision research, CNNs are becoming
increasingly popular for modelling early visual areas (Batty
et al., 2017; Ecker et al., 2019; Lindsey et al., 2019). Here
we propose the DCN model which can facilitate such in-
vestigations by linking the end-to-end trainable but discrete

CNN architectures with the spatio-temporally continuous
models of biological vision. Our approach makes it possi-
ble to optimize the spatial extent (kernel size) of the filters
during training, as well as explicitly model the dynamics of
the neuronal responses to input images.

Structured receptive fields. Classical receptive fields
(RFs) of cortical neurons display complex response prop-
erties with a wide array of selectivity structures already at
early visual areas (Van den Bergh et al., 2010). Such re-
sponse properties may also vary greatly based on multiple
factors. For example the RF size (spatial extent) is known to
depend on eccentricity (Harvey & Dumoulin, 2011), visual
area (Smith et al., 2001) and even cortical layer (Bauer et al.,
1999). Similarly, studies have shown that spatial frequency
selectivity and receptive field size may co-vary with input
contrast (Sceniak et al., 2002).

Based on these observations, we aim to build a model which
can accommodate the biological realism better than con-
ventional CNNs, by explicitly modelling the RF size as a
trainable parameter. To that end, we adopt a Gaussian scale-
space representation for the convolutional filters, which
we call structured receptive fields (SRFs) (Jacobsen et al.,
2016). Previously, Gaussian scale-spaces have been pro-
posed as a plausible model of biological receptive fields
and feature extraction in low-level vision (Florack et al.,
1992; Lindeberg, 1993; Lindeberg & Florack, 1994). Here,
we are inspired by computational models which investigate
the origin of response properties in the visual system, by
employing RFs and recurrent interaction functions which
scale as a difference of Gaussians (Somers et al., 1995; Ernst
et al., 2001).

Neural ODEs. Studies have shown that both the con-
trast (Albrecht et al., 2002) and spatial frequency (Frazor
et al., 2004) response functions of cortical neurons display
characteristic temporal profiles. However, temporal dynam-
ics are not incorporated into standard feed-forward CNN
models. In addition, it has been suggested that lateral inter-
actions play an important role in the generation of complex
and selective neuronal responses (Angelucci & Bressloff,
2006). Such activity dynamics are often computationally
modeled using recurrently coupled neuronal populations
whose activations evolve according to coupled differential
equations (Ben-Yishai et al., 1995; Ernst et al., 2001).

To describe the continuous evolution of feature maps consis-
tent with biological models, we adopt the framework of neu-
ral ODEs (Chen et al., 2018). Neural ODE interpretation of
ResNet models presents an opportunity to explicitly model
the dynamics of feature extractors in feed-forward CNNs.
Under certain assumptions, neural ODEs can be interpreted
as biologically plausible recurrent interactions (Liao & Pog-
gio, 2016; Rousseau et al., 2019), where the depth dimen-
sion represents time. Unlike neural ODEs with pixel-based
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Figure 1. SRF filters based on N-jet filter approximation. Convolutional filters are defined as the weighted sum of Gaussian derivative basis
functions up to order 2, with corresponding scales σ1 = 2.28 (left) and σ2 = 0.90 (right). Our DCN models learn both the coefficients α,
and the scale σ end-to-end during training.

convolutional filters, DCNs with structured filters (SRFs)
also provide an intuitive way to parametrize the evolution
of the kernels as a function of depth.

Deep Continuous Networks. DCNs presented here com-
bine structured receptive fields with neural ODEs. We view
spatio-temporally continuous representations in end-to-end
trainable networks as a link between modern CNN architec-
tures and computational models of biological vision. Specif-
ically, we are inspired by large-scale models of popula-
tion activity. In contrast, networks modelling biological
phenomena at smaller spatio-temporal scales may require
discrete descriptions of biological neurons, such as spatially-
discrete photoreceptors or temporally-discrete spiking dy-
namics. However, continuous rate-based population models
provide reasonably good explanations of phenomena ob-
served at the network or systems level (Ben-Yishai et al.,
1995; Dayan & Abbott, 2001), which we believe align well
with CNNs trained on high-level computer vision tasks.

Taken together, DCNs provide a fully trainable analog to
biological models with continuous receptive fields and con-
tinuously evolving state variables, while preserving the mod-
ularity of the visual hierarchy by stacking spatio-temporally
continuous blocks in a feed-forward stream (Fig. 2).

2.2. Structured receptive fields

We use the multiscale local N-jet formulation (Florack et al.,
1996) to define the filters in convolutional layers. Struc-
tured receptive fields (SRFs) based on the Gaussian N-jet
basis functions are highly applicable to CNNs, as they rep-
resent a Taylor expansion of the input image or feature
maps in a local neighbourhood in space and scale, and can
be used to approximate pixel-based filters (Appendix A.1).
This means that each filter F (x, y;σ) in the network is a
weighted sum of N basis functions, which are partial deriva-
tives of the isotropic two-dimensional Gaussian function

G(x, y;σ) = 1
2πσ2 e

−(x2+y2)

2σ2 . The scale, or the spatial ex-
tent, of the filter is explicitly modelled in the σ parameter

of the Gaussian, which also indirectly determines the spa-
tial frequency response of the SRF (Fig. 1). Note that the
Gaussian SRF formulation allows for learning filters with
different aspect ratios, however, in this work we only con-
sider isotropic basis functions with σ = σx = σy .

The N-jet formulation of an SRF filter F (x, y) is given by:

Fα(x, y;σ) =

l+k ≤ N∑
0 ≤ l, 0 ≤ k

αl,k G
l,k (x, y; σ)

=

l+k ≤ N∑
0 ≤ l, 0 ≤ k

αl,k
∂l+k

∂xl∂yk
G (x, y; σ) , (1)

where Gl,k (x, y; σ) are the partial derivatives of the Gaus-
sian G(x, y;σ) with respect to x and y, N is the degree of
the Taylor polynomial which determines the basis order, and
α encodes the expansion coefficients.

N-jet SRFs have favourable properties over pixel-based fil-
ters. SRF filters are steerable by the coefficients α and
the basis functions are spatially separable. Likewise, due
to their spatially continuous description, the filters can be
trivially scaled, or rotated, without interpolation. In addi-
tion, SRFs can provide parameter efficiency when filters
are constructed using a small number of basis functions.
In this work we opt for basis order 2 (basis function up to
the second order derivative), which yields relatively smooth
filters. However, the generalized SRF framework allows for
learning more irregular RF shapes by increasing the number
of basis functions.

Fig. 1 shows the N-jet approximation of two filters in differ-
ent scales σ1 and σ2. We note that both the coefficients α
and the scale σ are learnable filter parameters. Instead of fix-
ing the scale σ a priori and optimizing for α as in Jacobsen
et al. (2016) and Sosnovik et al. (2020), we integrate both
these parameters in the network optimization, thus learning
not only the shape but also the spatial support of the filters.
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2.3. Neural ODEs

We model the continuous evolution of feature maps as a
function of depth t within an ‘ODE block’. Formally, an
ODE block contains a stack ofM convolutional layers, each
with its own convolutional filters wm with m = 1 . . .M ,
followed by normalization Gnorm(·) and non-linear activa-
tion CELU(·) functions. Following the notations of Chen
et al. (2018) and Ruthotto & Haber (2019), we define the
equations of motion for the feature states h ∈ Rn as:

dh(t)

dt
= f(h(t), t,wm,dm) (2)

= Gnorm [K2(w2)g(K1(w1)g(h) + d1t) + d2t]

where g(x) = CELU(Gnorm(x)), the linear opera-
tors Km(·) ∈ Rn×n denote the convolution operators
parametrized by wm. The filters wm(θ), dm(θ) are func-
tions of learnable parameters θ. In conventional CNNs wm
are typically 3× 3 kernels where the learnable parameters
correspond to pixel weights. In the DCN model we define
the filters wm using the Gaussian SRF, thus, the learnable
parameters are basis coefficients α and scale σ, and the ker-
nel size is not fixed but scales with σ and is learned (see
Section 2.4).

The CNN convolution operator, Km(wm) with 2 input and
2 output channels can be written as

Km(wm) =

(
K1,1
m (w1,1

m ) K1,2
m (w1,2

m )
K2,1
m (w2,1

m ) K2,2
m (w2,2

m )

)
(3)

with wjim the convolutional kernels for input channel i and
output channel j of the m-th convolution. The time-offset
terms dmt in Eq. 2 makes the ODE an explicit function of
t, which separates the ODE block implementation from a
simple convolutional block with weight sharing over depth.

In accordance with conventional ResNet blocks, we pick
M = 2. Based on the implementation by Chen et al. (2018),
Gnorm is defined as group normalization (Wu & He, 2018).
For generalized compatibility with ODEs and the adjoint
method, we choose a non-linear activation function with a
theoretically unique and bounded adjoint, namely continu-
ously differentiable exponential linear units, or CELU (Bar-
ron, 2017). Similarly, we keep the linear dependence of
the equations of motion on continuous network depth t. Fi-
nally, we adapt the GPU implementation of ODE solvers1 to
solve the equations of motion for a predefined time interval
t ∈ [0, T ] using the adaptive step size DOPRI method.

Time vs. depth In the neural ODE definition (Chen et al.,
2018), the discrete depth of feed-forward networks such
as ResNets is reimagined as a continuous dimension de-
noted by time t, where the input image defines the initial

1https://github.com/rtqichen/torchdiffeq/
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Figure 2. DCN model architecture with CIFAR-10 input images.
Convolutional kernel size k is learned during training. The equa-
tions of motion (Eq. 2) are solved within ODE blocks.

conditions h(0). For the rest of this paper, we use the inter-
pretation that the number of function evaluations performed
by the numerical ODE solver is analogous to network depth.
In this sense, continuous ‘depth’ or ‘time’ refers to the con-
tinuous variable t within the ODE blocks, while the full
architecture is still modular and composed of multiple ODE
blocks. It is also important to note that when we talk about
the spatio-temporal dynamics of DCNs, we refer to the tem-
poral evolution of the feature maps in the ODE blocks and
not to input dynamics, as in a video. While DCNs are pri-
marily feed-forward networks, the ODE definition makes it
possible for DCNs to model time-varying neuronal activa-
tions via the ‘continuous depth’, even in response to static
input images (see Section 4 for more detailed comparisons
with recurrent neural networks).

2.4. Deep Continuous Networks with SRFs and ODEs

We formulate deep continuous networks (DCNs) by em-
ploying learnable, continuous SRF filter descriptions to de-
fine the weights w in the evolution of a neural ODE. This
means that for DCNs, each wjim in Eq. 2 is a discretization
of the continuous SRF filter Fαjim(x, y;σm) given in Eq. 1,
sampled in [−2σm, 2σm]. αjim and σm are trainable filter
parameters, where σjim = σm is shared between the filters
in a convolutional layer m unless stated otherwise. All our
code is available at2.

Network architecture and training. We construct DCNs
by stacking ODE blocks separated by downsampling blocks
(Fig. 2). Each downsampling block is a sequence of normal-
ization, nonlinear activation and strided convolution. We use
a convolutional layer for increasing the channel dimension-
ality at the input level and employ global average pooling
and a fully connected layer at the output level. We train

2https://github.com/ntomen/Deep-Continuous-Networks
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Table 1. CIFAR-10 validation accuracies of DCN models, aver-
aged over 3 runs, compared to baseline models. ODE-Net and
ResNet-blocks baselines are as introduced in *Chen et al. (2018).
DCNs perform on par with spatially and/or temporally discrete
baselines, despite having a lower number of trainable parameters.

Model Continuity Accuracy
(%)

Para-
metersSpatial Temporal

ODE-Net * x X 89.6 ± 0.3 560K
ResNet-blocks * x x 89.0 ± 0.2 555K
ResNet-SRF-blocks X x 88.3 ± 0.03 426K
ResNet-SRF-full X x 89.3 ± 0.4 323K

DCN-ODE X X 89.5 ± 0.2 429K
DCN-full X X 89.2 ± 0.3 326K
DCN σji X X 89.7 ± 0.3 472K

our networks using cross-entropy loss and the CIFAR-10
dataset (Krizhevsky, 2009). (See Appendices A.2-A.3 for
further details regarding training parameters.)

As a baseline without spatial continuity, we compare
DCN performance to the ODE-Net introduced in Chen et al.
(2018), where the convolutions within the ODE blocks are
performed using discrete, pixel-based kernels, with 3 × 3
parameters. As a baseline without (depthwise) temporal
continuity, we define the ‘ResNet-blocks’ model where the
ODE blocks are replaced by generic, discrete ResNet blocks,
comprising two convolutional layers and a skip connection,
with comparable number of parameters to the ODE-Net.
This is also a baseline model used in Chen et al. (2018).
In the ResNet-SRF-blocks model, we provide the discrete-
depth and continuous-space baseline by replacing the 3× 3
filter definition of ResNet-blocks with SRF definitions.

We test two versions of DCNs and ResNet-SRF-blocks to
quantify the viability of SRF filters outside of the ODE
blocks. In DCN-ODE and ResNet-SRF-blocks we use the
SRF filters only within the ODE (ResNet) blocks, and for
the remaining layers we use discrete kernels with the same
hyperparameters as the baselines. In the second version,
DCN-full (ResNet-SRF-full), we use spatially continuous
kernels everywhere, including the downsampling layers.

As an additional demonstration of the versatility of DCNs,
we conduct an image reconstruction experiment on CIFAR-
10. We use the feature maps generated by encoder networks
(output of ODE Block 3 in Fig. 2), as input to a decoder net-
work. The decoder networks are composed of 2 DCN-ODE,
ODE-Net or ResNet blocks, separated by bilinear upscaling
layers and 1× 1 convolutions to reduce dimensionality.

Finally, we investigate the case where we drop scale sharing
within a layer, and optimize the scale parameter σjim inde-
pendently for each input channel i and output channel j,
which we call DCN σji.

Meta-parametrization. DCNs enable us to parametrize
the trainable filter parameters α and σ as a function of
depth t. This both enables the kernels to vary smoothly
over depth, and lets us define temporal dynamics for the
neuronal responses in our network. We test the viability of
such models by introducing DCN variants where σ and/or
α are defined using linear or quadratic functions of t and
learnable parameters a, b, c, as, bs, aα and bα (Table 4).

3. Experimental Analysis
3.1. Parameter reduction and data efficiency

Similar to biological models, where analytical receptive
fields limit the scope of the model using prior information,
we find that DCNs are more parameter efficient compared to
baseline networks. Evaluated on CIFAR-10, DCNs perform
on par with baselines, despite using SRFs of a small basis
order 2, which means each filter shape is defined by only 6
free parameters as opposed to 9 for the conventional 3× 3
kernels (Table 1). In addition, we find that parameter reduc-
tion via the use of SRFs with a small basis order also leads
to data efficiency. When trained on a subset of CIFAR-10
images (small-data regime), DCNs outperform the discrete
baseline networks (Table 2). We also find accuracy increase
over the small-data performance reported by Arora et al.
(2020) for the convolutional neural tangent kernel (CNTK)
model (Table 2).

Moreover, we train encoder-decoder networks to reconstruct
CIFAR-10 images using mean squared error (MSE) loss.
We find that the DCN models outperform discrete baseline
models on the validation set (Table 3), despite having a
lower number of parameters as before. Additional details
and example images are shown in Appendix A.4.

We find that meta-parametrized DCN variants match the
classification performance of baselines and may outperform
DCNs with static weights (Table 5). This is an interesting
finding as we test only a few models, with little hyperparam-
eter optimization, indicating that DCNs can potentially be
used to parametrize the dependence of convolutional kernel
weights on network depth, for further parameter reduction.

3.2. Link with biological models

Scale fitting. As an advantage over conventional CNNs, it
is possible to directly investigate the optimal receptive field
(RF) size in each DCN block after training, since DCNs
fit the kernel scale σ explicitly. We observe an upward
trend in the SRF scale σ with the depth of the convolutional
layer within the network (Fig. 3a). While the RF size grows
with depth also in conventional CNNs, it typically grows
in a predetermined manner: for a cascade of convolutional
layers the RF size is a linear function of depth given constant
kernel size. Thus, the receptive field size at every CNN layer
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Table 2. Validation accuracies for the DCN-ODE model and baselines trained on a subset of CIFAR-10 (small-data regime). First two
rows show small-data baseline accuracies taken from †Arora et al. (2020). ResNet-blocks and ODE-Net models are implemented by
us, as in Table 1. The DCN model outperforms spatially and/or temporally discrete baselines for medium training set size as parameter
efficiency leads to data efficiency. All results are averaged over 3 runs.

Model # images per class
2 4 8 16 32 52 64 103 128 512 1024

ResNet34† 17.5±2.5 19.5±1.4 23.3±1.6 28.3±1.4 33.2±1.2 – 41.7±1.1 – 49.1±1.3 – –
CNTK† 18.8±2.1 21.3±1.9 25.5±1.9 30.5±1.2 36.6±0.9 – 42.6±0.7 – 48.9±0.7 – –

ResNet-blocks 16.7±0.8 19.6±1.0 22.0±1.3 28.1±1.7 35.4±0.9 39.8±0.6 41.6±1.5 49.0±0.2 50.9±0.6 70.4±1.2 76.8±0.7
ODE-Net 16.8±2.8 20.5±0.8 23.1±2.5 29.8±0.8 36.4±1.0 41.7±1.2 42.3±0.2 48.6±0.5 50.7±0.7 71.7±1.5 77.4±0.5
DCN-ODE 16.4±1.6 19.8±0.7 26.5±0.9 31.2±0.6 37.7±0.6 44.5±0.8 48.0±1.3 54.2±0.8 58.2±0.7 75.5±0.8 79.7±0.3

Table 3. DCNs achieve lower MSE loss in the reconstruction task
than discrete baselines on the CIFAR-10 validation set, despite
using a smaller number of parameters. See also Appendix A.4
for reconstructed image examples. All results are averaged over 3
runs.

Model Reconstruction
Loss (%)

ResNet-blocks 21.0 ± 0.4
ODE-Net 20.2 ± 1.3
DCN-ODE 17.1 ± 0.3

is fixed depending on the architecture and hyperparameters.
This is a limitation of CNNs which the visual system does
not necessarily have. DCNs, on the other hand, can learn
RF sizes which grow non-linearly as a function of depth,
which seems to be in line with the behaviour in downstream
visual areas (Smith et al., 2001).

In addition, we plot the distribution of learned σji in differ-
ent ODE blocks of the model DCN σji (Fig. 3b). Note that
the scale parameter σ controls the bandwidth of the SRF
filters and is thus related to their spatial frequency response.
We find that the σji distributions after training are approx-
imately log-normal and display a positive skew, which is
consistent with the scale and spatial frequency tuning dis-
tributions in the primate visual system (Yu et al., 2010).
We believe these results are promising for bridging the gap
between deep learning and traditional models of biological
systems.

Pattern completion. Established models from computa-
tional neuroscience, with continuous temporal dynamics
and well-defined recurrent interaction structures, such as
the Ermentrout-Cowan model (Bressloff et al., 2001), or
neural field models (Amari, 1977), display interesting high-
level phenomena such as spontaneous pattern formation
and travelling waves (Coombes, 2005). Such models em-
ploy local, distance-dependent interactions, similar to the
SRF-based ODE blocks in the DCN formulation. Based on

Table 4. Meta-parametrization of filter parameters σ and α as a
function of depth t in different DCN variants.

Model Parametrization

DCN σ(t) σ = 2at+b

DCN σ(t2) σ = 2at
2+bt+c

DCN σ(t), α(t) σ = 2ast+bs , α = aαt+ bα

Table 5. CIFAR-10 validation accuracies averaged over 3 runs for
DCN models with meta-parametrization.

Model Accuracy (%)

DCN σ(t) 89.97 ± 0.30
DCN σ(t2) 89.93 ± 0.28
DCN σ(t) and α(t) 89.88 ± 0.25

this resemblance, we explore whether DCNs may display
similar emergent properties. Specifically, we hypothesize
that DCNs can perform well in the case of locally missing
information in images, through pattern completion at the
feature map level.

We test this hypothesis on the DCN models trained on
CIFAR-10 classification by masking n × n pixels of the
validation images at test time. The masks have zero pixel
values, and are placed at the center of the image. We find
that when confronted with a small patch of missing informa-
tion at test time, DCNs can generate feature maps similar to
those obtained from intact images. Specifically, we observe
that the total difference:

D(t) =
1

A

∑
|him(t)− him masked(t)| (4)

between the feature maps generated by an intact image
him(t) and a masked image him masked(t), normalized by
the amplitude of the intact image A, is reduced within an
ODE block (Fig. 4). In terms of the overall classification
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performance with images masked at test time, we find that
DCNs are marginally more robust against zero-masking
than baselines (Fig. 3c).

3.3. Contrast robustness and computational efficiency

The selectivity of neuronal responses is invariant to con-
trast in mammalian vision (Sclar & Freeman, 1982; Skottun
et al., 1987). However, we observe that DCN and ODE-Net
models are sensitive to changes in input contrast. This is
not unexpected since ODE blocks compute the solution to
the initial value problem posed by the equations of motion
and the input h(0). To quantify this sensitivity we vary
the contrast c of the input images at test time, where for
each image H in the CIFAR-10 validation set we define the
network input as Ĥ = cH . When naively changing the in-
put contrast c this way, we find that the validation accuracy
decays rapidly for both models (solid lines in Fig. 5, top).

Empirically, we notice that, with the appropriate choice of
normalization functions, the input contrast c has a direct
effect on the time scales of the solution h(t). This means
that under different contrast values c, the feature map trajec-
tories within an ODE block may converge faster, and a more
efficient DCN implementation might be possible. Based on
this observation, we heuristically test whether scaling the
integration time interval T (used during training) of ODE
block 1 by the input contrast at test time, as T̂ = cT , can
improve contrast robustness at test time. We find that with
the scaled integration interval, DCN validation accuracy is
relatively robust against changes in contrast c, compared
to naive baselines and ODE-Net, until c << 1 when time
scales become too fast and the ODE solver becomes unsta-
ble for all models (dashed lines in Fig. 5, top).

Interestingly, we observe a reduction in the number of func-
tion evaluations (NFEs) in ODE block 1 for c < 1 (Fig. 5,
middle). Furthermore, we show that as long as the error tol-
erance of the ODE blocks are not decreased, this effect can
be exploited by scaling the input feature maps of all ODE
blocks by c for significant computational savings. We find
that decreasing c leads to considerable efficiency improve-
ments, where total NFEs can be reduced from 102 to 60,
(for c = 1 and 0.06), with less than 0.5% loss in accuracy
(Fig. 5, bottom).

4. Related Work
Our proposed DCN networks extend prior work on continu-
ous filters and continuous depth neural ODEs.

Spatially continuous filter representations. Structured fil-
ters have been traditionally used in computer vision for ex-
tracting image structure at multiple scales. N-jet filter basis
is first introduced by Florack et al. (1996) based on previ-
ous work on Gaussian scale-spaces (Florack et al., 1992;

Lindeberg, 2013). We use the N-jet basis, which enables a
spatially continuous representation, with a learnable scale
parameter σ, to approximate convolutional filters.

Similar to the N-jet basis, a set of oriented multi-scale
wavelets, called a steerable pyramid, is proposed by Si-
moncelli et al. (1992) and complex wavelets have been used
by Mallat (2012) and Bruna & Mallat (2013) as part of scat-
tering transforms. CNN filters based on linear combinations
of Gabor wavelets are adopted by Luan et al. (2018), while
Worrall et al. (2017) propose circular harmonics, as spatially
continuous filter representations.

Similar to our approach, Shelhamer et al. (2019) combine
free-form filters with Gaussian kernels, thus learning the
filter resolution. Likewise, Xiong et al. (2020) learn filter
sizes using Gaussian kernels optimized using variational in-
ference. Finally, Loog & Lauze (2017) integrate continuous
scale-selectivity through a regularization hyper-parameter.
Here, we use the N-jet framework based on Gaussian deriva-
tives as in Jacobsen et al. (2016) and Pintea et al. (2021),
however our main motivation is retaining compatibility with
biological models. Also, unlike Jacobsen et al. (2016) we
learn the scale parameter σ during training.

Continuous depth representations in deep networks.
Along with work by Lu et al. (2018) and Ruthotto & Haber
(2019), networks continuous in the depth (or time) dimen-
sion have been proposed by Chen et al. (2018) under the
name neural ordinary differential equations (ODEs). They
propose ODE-Nets based on the ResNet formulation (He
et al., 2016) for classification tasks, which we use as a base-
line. In this work we focus mainly on image classification,
however, there is extensive ongoing work on generative mod-
els and normalizing flows using the neural ODE continuous
depth interpretation (Salman et al., 2018; Grathwohl et al.,
2019). We note that DCNs can be readily incorporated into
continuous flow models, as well as other spatio-temporally
continuous CNN interpretations based on partial differential
equations (Ruthotto & Haber, 2019).

Even though the adjoint method described in Chen et al.
(2018) offers considerable computational savings, especially
in terms of memory, recent work has improved upon it both
in terms of stability, computational efficiency and perfor-
mance (Dupont et al., 2019; Finlay et al., 2020; Zhuang
et al., 2020b). Likewise, the contrast robust formulation of
DCNs, as well as the synergy between the O(1) memory
complexity of the adjoint method and spatially separable
SRF filters (the implementations of which may otherwise
inflate the memory cost) provide potential computational
benefits over conventional CNNs where the number of func-
tion evaluations is fixed.

Other studies have suggested that, similar to our DCN vari-
ants where the filter definitions are independent of depth,
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Figure 3. (a) Learned σ values increase with depth within the network. (b) σji distributions within the ODE blocks display a positive
skew in line with biological observations. (c) CIFAR-10 validation accuracies on the pattern completion task with increasing mask size.

neural ODEs based on ResNet architectures with weight
sharing can be interpreted as recurrent neural networks (Kim
et al., 2016; Rousseau et al., 2019), which bridges the gap
between deep learning, dynamical systems and the primate
visual cortex (Liao & Poggio, 2016; Massaroli et al., 2020).
Similar to these works, we illustrate the parallels between
neural ODEs and the dynamical systems approach of the
computational models of biological circuits. As a novel con-
tribution, we extend neural ODEs to DCNs, where not only
the depth of the network is continuous but also the shape
and spatial resolution of the filters are end-to-end trainable.

CNNs and RNNs as models of biological networks.
There is extensive prior work on CNNs and recurrent neural
networks (RNNs) for modeling biological computation. The
visual cortex is highly recurrent (Dayan & Abbott, 2001;
Liao & Poggio, 2016) which is thought to be responsible
for complex neuronal dynamics (Ben-Yishai et al., 1995;
Angelucci & Bressloff, 2006). Accordingly, computational
models with lateral connections (Sompolinsky et al., 1988;
Ernst et al., 2001) and more recently RNNs (Laje & Buono-
mano, 2013; Mante et al., 2013; Mastrogiuseppe & Ostojic,
2018) have been extensively used as models of biological
neural computation. For example the first-order reduced
and controlled error (FORCE) algorithm, have been used to
reproduce the dynamics of different biological circuits (Sus-
sillo & Abbott, 2009; Laje & Buonomano, 2013; Carnevale
et al., 2015; Rajan et al., 2016; Enel et al., 2016). Simi-
larly, optimization via gradient-based algorithms such as
the Hessian-free method (HF) or stochastic gradient-descent
(SGD) have been adopted to replicate experimental obser-
vations (Mante et al., 2013; Barak et al., 2013; Song et al.,
2016). It has also been suggested to use spiking recurrent
networks (Kim & Chow, 2018; Kim et al., 2019) and in-
corporate synaptic dynamics (Ba et al., 2016; Miconi et al.,
2018) for improved physiological realism.

Bringing together the power of CNNs and neuroscience,

recurrent convolutional networks (RCNNs) have been pro-
posed (Liang & Hu, 2015; Spoerer et al., 2017; Hu & Miha-
las, 2018), which can emulate biological lateral connectivity
structures and extra-classical receptive field effects. Similar
to our work where depthwise-continuity mimics recurrent
networks, it has been shown that adding recurrent layers to
convolutional deep networks can facilitate pattern comple-
tion in a manner consistent with psychophysical and electro-
physiological experiments (Tang et al., 2018). Furthermore,
our DCN models have the potential to compress the depth
of the network, by replacing multiple sequential layers with
meta-parametrized ODE blocks, which are analogous to
recurrent networks with continuously evolving filter param-
eters. In a similar line of work, it has previously been shown
that shallow networks with recurrently connected layers can
achieve high object recognition performance while retaining
brain-like representations, and specifically reproducing the
population dynamics in area IT of the visual system much
more closely than feed-forward deep CNNs (Kar et al., 2019;
Kubilius et al., 2019).

In contrast to standard RNNs, our model is based on the
ResNet inspired model of neural ODEs, and in its current
form (Eq. 2), does not accept time-variant input. In that
sense, the spatio-temporal dynamics of DCNs refer to the
dynamics of the feature maps, or neuronal responses, and
not the input. Nevertheless, this gives DCNs the ability to
model time-varying responses, even to static input images.

In addition, DCNs with weight sharing can be thought of as
recurrent networks (Rousseau et al., 2019) and can be eas-
ily modified to process time-variant input (such as videos).
However, in this paper we consider DCN models as an ex-
tension of conventional feed-forward CNNs, with extended
temporal dynamics and continuous spatial representations,
which are applicable to feed-forward models of the visual
system similar to works by Schrimpf et al. (2018); Lindsey
et al. (2019); Ecker et al. (2019); Zhuang et al. (2020a).
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image and him masked(t) of a masked image is reduced as t → T .
We also show the mean D(t) for 1000 validation images (bottom
right), where the shaded area is the standard deviation over dif-
ferent images. Example feature maps from baseline models are
provided in Appendix A.5.

5. Discussion
We introduce DCNs, CNN models which learn spatio-
temporally continuous representations, consistent with bi-
ological models. We show that DCNs can match baseline
performance in an image classification task and outperform
baselines in the small-data regime and in a reconstruction
task, while using a smaller number of parameters. Similarly,
we propose different methods of meta-parametrization of
the convolutional filter as a function of depth, which may
not only be applicable to network compression, but also
for modelling the temporal profiles of biological responses.
As a further link with biological models, we have demon-
strated that the learned filter scale distributions in DCNs are
compatible with experimental observations. This makes the
DCN models viable for future neuroscientific investigations
regarding the emergence of RF sizes. In addition, we have
presented the capability of DCNs to reduce errors in fea-
ture maps caused by masking. Finally, we have empirically
shown an interesting interplay between the input contrast to
ODE blocks and the time scales of the solutions, which can
be capitalized on for computational savings.

However, one of the biggest limitations of DCN models
is that they may become unstable during training. Com-
bining neural ODEs with scale fitting may lead to explod-
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Figure 5. On the CIFAR-10 validation set, DCNs are more robust
than baseline ODE-Nets to changes in input contrast c at test time
(top). Interestingly, the number of function evaluations (NFEs) in
the first ODE block (middle) or the whole DCN network (bottom)
can be reduced considerably by modulating c.

ing filter sizes at large learning rates. Especially for meta-
parametrization, it would be advisable to clip the integration
time and filter parameters within a reasonable range.

Nevertheless, we believe there are exciting future research
opportunities involving DCNs. Neural ODE formulations
provide an interesting opportunity for establishing a theo-
retical understanding of deep networks based on dynamical
systems. The interplay of input contrast and integration time
is one such observation which requires further investigation.
Similarly, our choice of filters based on well-behaved Gaus-
sian derivatives allow for further analytical studies, unlike
conventional CNNs.

Similarly, DCNs offer interesting possibilities for biological
modelling. The inbuilt smooth evolution of filters in DCNs
can be used, for example, to incorporate response dynamics
such as synaptic depression or short-term potentiation (Ba
et al., 2016; Miconi et al., 2018). Likewise, the equations of
motion can be modified to reflect axonal delays or generate
oscillations. Taken together, we believe by offering a link
between dynamical systems, biological models and CNNs,
DCNs display an interesting potential to bring together ideas
from both fields.
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