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ABSTRACT

This work incorporates the multi-modality of the data distribution into a Gaussian Process regression
model. We approach the problem from a discriminative perspective by learning, jointly over the
training data, the target space variance in the neighborhood of a certain sample through metric learning.
We start by using data centers rather than all training samples. Subsequently, each center selects an
individualized kernel metric. This enables each center to adjust the kernel space in its vicinity in
correspondence with the topology of the targets — a multi-modal approach. We additionally add
descriptiveness by allowing each center to learn a precision matrix. We demonstrate empirically the
reliability of the model.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Departing from the standard Gaussian Process, we introduce
a regression approach that incorporates the multi-modality of
the data distribution. While in the Gaussian Process model we
have a global kernel metric that is shared by all the samples
Rasmussen (2006), here we propose to define a set of training
data centers considerably smaller than the number of training
samples. Subsequently, we learn from the numerous training
samples an individualized kernel metric per training data center.
By doing so, we are able to use a smaller training kernel matrix
computed only on the training data centers while retaining the
descriptive power of the model. This is highly efficient at test-
time as it limits the size of the kernel matrix.

In our method we introduce two main changes to the standard
Gaussian Process regressor: (i) we define a number of centers
over the training data, by clustering or sampling; (ii) we learn
individual kernel metric parameters per data center, discrim-
inatively through metric learning, giving rise to a multi-modal
approach with an asymmetric kernel matrix. Figure 1 illustrates
these differences when comparing with the standard Gaussian
Process trained on either data centers or on all samples: we use
fewer samples in the kernel computation, while enhancing the
descriptiveness of the model by learning individualized metrics
per center. We additionally expand the kernel parameters to a
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precision matrix, also learned through metric learning per cen-
ter, giving rise to a multivariate multi-modal approach.

The individual steps of our model are not specifically novel,
yet their combination is what gives strength. Clustering of the
data in Gaussian Processes has been previously proposed Pin-
tea et al. (2016); Snelson and Ghahramani (2007). Asymmetric
kernels have been studied in works such as Mackenzie and Tieu
(2004); Wua et al. (2010). While a multivariate lengthscale pa-
rameter has been used in Kersting et al. (2007); Lázaro-Gredilla
and Titsias (2011); Pintea et al. (2016) for improved descrip-
tiveness. Here, we combine all these ideas into a new approach
which is suitable for learning target data variance. If we con-
sider each training sample to be a data center, and enforce that
all samples share the same kernel metric, and assume a uni-
variate lengthscale in the kernel metric, we recover the stan-
dard Gaussian Process definition. We evaluate the proposed
approach by gradually enabling these changes: center-based
Gaussian Process, univariate multi-modal asymmetric Gaussian
Process, and multivariate multi-modal asymmetric Gaussian
Process. The experiments validate our models on the regres-
sion datasets So2 and Temp used in Titsias and Lázaro-Gredilla
(2013), the large scale Airlines dataset of Hoang et al. (2015),
and two realistic image datasets: UCSD Chan and Vasconce-
los (2012) and VOC-2007 Everingham et al. for pedestrian and
generic-object counting, respectively.
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Fig. 1. An intuitive illustration of the proposed asymmetric kernel metric optimization, when compared with the standard Gaussian Process
on data centers or on all samples. Given that each data center learns both a personalized size and shape of the kernel, we obtain a more
descriptive model than the standard Gaussian Process, while using a limited number of data centers in the kernel matrix computation.

2. Related Work

2.1. Mixtures of Gaussian Processes

Noteworthy work has been focusing on mixtures of Gaussian
Processes Lázaro-Gredilla et al. (2012); Meeds and Osindero
(2006); Nguyen and Bonilla (2014); Rasmussen and Ghahra-
mani (2002); Tresp (2000); Yuan and Neubauer (2009). In
Tresp (2000) a mixture of Gaussian Processes is proposed to
effectively deal with large data. Meeds and Osindero (2006);
Rasmussen and Ghahramani (2002) extend this idea to an in-
finite mixture of Gaussian Processes. Somewhat similarly, Li
(2014) splits the problem into subproblems in a divide-and-
conquer fashion and solves each such problem in a Gaussian
Process model. Yuan and Neubauer (2009) proposes an el-
egant variational Bayesian algorithm for training the mixture
of Gaussian Process experts. An effective model is proposed
in Lázaro-Gredilla et al. (2012), where the authors simplify
the mixture of experts so no gating function is used to assign
samples to components and rather, trajectory clustering is em-
ployed. Nguyen and Bonilla (2014) gracefully combines the
mixture of Gaussian Process experts with the idea of inducing
points, providing fast approximate Gaussian Process models.
Unlike these works, where the final prediction entails a com-
bination of predictions, each obtained within the metric space
of individual components, we learn the hyper-parameters as-
sociated with each training data centers in a single Gaussian
Process. We do so by employing an asymmetric kernel. There-
fore, at test-time for an input test sample, rather than computing
N × M kernel distances, where N is the number of components
and M is the number of training samples, we only compute N
distances. In our case N is the number of data centers, consid-
erably smaller than M.

2.2. Efficiency in Gaussian Processes

The work of Quiñonero-Candela and Rasmussen (2005) re-
views the sparse approximations of Gaussian Process from a
unified perspective by analyzing the implied prior of different
methods. Csató and Opper (2002) proposes learning iteratively,

online, the sparse set of inducing points in a Bayesian formal-
ism by minimizing the KL divergence. Inspired from metric
learning techniques, Lawrence et al. (2003) uses forward selec-
tion to obtain a sparse and time-efficient model. Snelson and
Ghahramani (2005) proposes a graceful solution of learning a
set of sparse pseudo-inputs through gradient based optimiza-
tion. A combination between sparse methods based on induc-
ing points and local regression based on a multitude of experts
describing locally the target space, is proposed in Snelson and
Ghahramani (2007). In Titsias (2009); Titsias and Lawrence
(2010) variational approaches are used to learn sparse represen-
tations. Titsias (2009) jointly learns the inducing points and the
kernel hyper-parameters by minimizing a lower bound through
KL divergence. The robust method of Hensman et al. (2013) de-
composes the Gaussian Process model, variationally, such that
it is factorized based on a set of global inducing variables. Bo
and Sminchisescu (2012); Ranganathan et al. (2011) focus on
iterative updates of the Gaussian Process. Rodner et al. (2012)
proposes the use of parameterized histogram intersection ker-
nels to bypass the hyper-parameter estimation. Cao et al. (2013)
proposes a method to speed up the hyper-parameter estimation
by inducing sparsity in the model. Somewhat similar to these
methods, we only retain a set of data centers as informative
training samples. Yet, unlike the above approaches, we subse-
quently add extra information into the Gaussian Process model
by treating the data centers differently.

2.3. Descriptiveness in Gaussian Processes

Full matrices in the kernel definition have been proposed in Pin-
tea et al. (2016); Vivarelli and Williams (1999), to make the
model more descriptive. Here, we also learn precision ma-
trices, in the kernel metric definition. However in our work,
each center has an individualized precision matrix. Paciorek
and Schervish (2004) proposes nonstationary covariance matri-
ces in the Gaussian Process model, tying the kernel metrics to
the input samples. However, the final kernel matrix is symmet-
ric as it is defined using symmetric combinations of per-sample
covariances, similar to RVM (Relevance Vector Machine). Ker-
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sting et al. (2007); Lázaro-Gredilla and Titsias (2011) propose
well-founded approaches to adding descriptiveness by extend-
ing the Gaussian Process definition to a heteroscedastic ap-
proach, by modeling the noise distribution to be dependent on
the training data. Kuss et al. (2005) proposes EP (Expectation
Propagation) as an effective manner to train these models. Sim-
ilarly, we also start with the assumption that the kernel met-
ric should be data dependent and learn an individualized ker-
nel metric. Titsias and Lázaro-Gredilla (2013) proposes a com-
pelling method for adjusting the kernel distances by assuming
the data is mapped in a feature space based on the Mahalanobis
kernel distance, estimated through variational inference. Unlike
this work, we learn both the shape and the scale of the kernels
per data center by minimizing the predictive loss.

2.4. Asymmetric Kernels

The use of asymmetric kernel distances is not a recent idea but,
rather, a well-matured topic Kulis et al. (2011); Mackenzie and
Tieu (2004); Tsuda (1999); Wua et al. (2010). In Tsuda (1999)
asymmetric kernels are proposed in the context of SVM classi-
fication. Wua et al. (2010) shows how similarity functions com-
monly used in real-life applications, can be related to asymmet-
ric kernels, and gives a formal definition for the mathematical
space described by asymmetric kernels. The work in Macken-
zie and Tieu (2004) proposes asymmetric kernel regression in
the context of neural networks and shows that such models are
better behaved around the data boundaries. The recent work of
Kulis et al. (2011) learns asymmetric distances for visual do-
main adaptation in the context of object recognition. Similar
to these methods, we also use asymmetric kernel distances, as
these prove to have more descriptive power when limiting the
number of samples in the training kernel computation.

2.5. Metric Learning

Rahimi and Recht (2007) learns a lower dimensional mapping
of data while maintaining the distances between the data sam-
ples — the kernel distances remain approximately equal to the
ones of the original features. In our work, we learn the ker-
nel metric given the targets, rather than the feature represen-
tation. In Weinberger and Tesauro (2007) the kernel metric
minimizes the leave-one-out regression error. Jain et al. (2012)
combines kernel learning with metric learning by employing
a linear transformation. In this work, we use a fixed kernel
— the squared exponential kernel, we additionally expand the
parameters of the kernel to full precision matrices. Globerson
and Roweis (2005); Weinberger et al. (2009); Xing et al. (2002)
represent pioneering work in the field of metric learning. Xing
et al. (2002) is the first paper to pose metric learning as a con-
vex optimization problem learned from similar/dissimilar pairs
of points. Globerson and Roweis (2005) is one of the first works
to propose Mahalanobis distances for metric learning. In Wein-
berger et al. (2009) the Mahalanobis distance is learned in a
nearest neighbor classifier, which induces a large-margin sepa-
ration of classes. Kedem et al. (2012); Kostinger et al. (2012);
Weinberger et al. (2009) are recent works focusing on metric
learning for classification with kernels, while Huang and Sun
(2013) focuses on sparse kernel learning for regression. In this

work we employ metric learning rather than estimating the opti-
mal model hyper-parameters through marginal likelihood Ras-
mussen (2006). We do so, as each data center has an associated
lengthscale in the proposed model and, thus, the marginal like-
lihood optimization is not straightforward in our case.

3. Asymmetric Kernel for Gaussian Processes

We redefine the Gaussian Process model by allowing each train-
ing data center to learn an individualized kernel metric. This en-
tails that the kernel matrix ceases to be symmetric in our case.
However, this comes at extra gain in descriptive power, as de-
spite using a small set of samples in the training kernel matrix,
we optimize the individualized kernel metrics over the numer-
ous available training samples.

3.1. Standard Gaussian Process Revisited

We shortly revisit the standard Gaussian Process formulation,
to unify the notations. The mean of the predictive distribution
is Rasmussen (2006):

f (x∗) = k(X, x∗)T
(
k(X,X) + σ2I

)−1
y, (1)

Where x∗ represents an input test sample, X represents the train-
ing samples used for the training kernel matrix computation, y
represents the training targets, f (x∗) is the prediction over the
input x∗ and k(·, ·) is the kernel metric used for estimating sam-
ple distances, and σ is the noise hyper-parameter.

3.2. Center-based Gaussian Process

As equation 1 indicates, the training procedure requires the
computation of the inverse of the training kernel-matrix,
k(X,X), which is prohibitive on larger datasets. The first al-
teration of the Gaussian Process model that we investigate, is
considering a set of data centers rather than individual training
samples. We do so by either sampling the data or clustering it
into a set of centers, X. Despite its simplicity, this is very effec-
tive in getting a fair overview over the variation in the training
data while not having to use all samples during training.

More principled manners of defining data centers such as ef-
fective sampling techniques are possible. However, the focus
here is not on the center definition, which is just meant as a
first step towards reducing the size of the training kernel matrix.
The strength of our model comes from allowing these centers
to learn individualized metrics.

3.3. Multi-modal Asymmetric Kernel

Given that we have sparsified the training data by keeping
only the training data centers, we lost information regarding
the smoothness or variability of the target function in different
regions of the data space. Therefore, we allow each training
center, xi ∈ X, to define individualized kernel metrics in its
data neighborhood. The lengthscale hyper-parameter is the one
defining the size of the kernel space, thus, we propose individu-
alized lengthscale hyper-parameters, li for each center xi. This
entails the second alteration of the standard Gaussian Process
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model. In this case the prediction function uses training and
test kernel terms with per-center metrics:

f (x∗) = k̂(X, x∗)T
(
k̂(X,X) + σ2I

)−1
y, (2)

where k̂(·, ·) is a non-symmetric kernel whose size depends
on its corresponding training center — k̂(xi, x j) = ki(xi, x j),
and xi, x j ∈ X are data centers. Thus, the distance from
a training center to the others is computed within the asso-
ciated kernel space of that center. At test-time k̂(X, x∗) =(
k1(x1, x∗), k2(x2, x∗), ..kN(xN , x∗)

)
, where N is the number of

training centers, and x∗ is a test sample. In this work we re-
strain our focus to the squared exponential kernel distance:

k̂(xi, x j) = ki(xi, x j) = exp
− 1

2l2i
(xi − x j)(xi − x j)T

 . (3)

where li is the lengthscale associated with data center xi.
Given the use of individualized metrics per data center, the

kernel ceases to be symmetric. Therefore, we can no longer
employ the standard Cholesky decomposition for estimating
the kernel-matrix inverse. We compute the kernel matrix in-
version through SVD (Singular Value Decomposition). Despite
this drawback, the individualized kernel metrics allow us to op-
timize the scale of the kernel locally, in the neighborhood of
each data center.

3.4. Multivariate Multi-modal Asymmetric Kernel
By allowing each center to define its own kernel metric, we
change the model such that we can locally resize the kernel
space to better map the target space. As highlighted in Chen and
Buja (2013), not only the size of the kernel space is important
but also the shape. Therefore, we also consider a multivariate
extension of the model that allows for optimizing also the kernel
shape per training center.

k̂(xi, x j) = ki(xi, x j) = exp
(
−

1
2

(xi − x j)Pi(xi − x j)T
)
. (4)

where Pi is the precision matrix associated with the data center
xi, to be learned from training data samples other than the ones
defining data centers.

3.5. Kernel Metric Optimization
Standardly in the literature, the Gaussian Process hyper-
parameters are learned through gradient methods by maximiz-
ing the marginal likelihood over the weights. Given that we aim
to optimize a kernel metric, following the metric learning lit-
erature Chen and Buja (2013); Globerson and Roweis (2005);
Weinberger et al. (2009); Xing et al. (2002) we approach this
problem discriminatively, and optimize the hyper-parameters
with respect to the squared loss.

Thus, we learn the appropriate kernel metric for each data
center, xi ∈ X, from training samples other than the data cen-
ters, xn ∈ X \ X. We add a regularization term to the squared
loss weighted by µ. We use the regularized squared loss over
the targets as the function to be minimized and we employ SGD
(Stochastic Gradient Descent) by estimating the gradients with

respect to each per-center lengthscale, li in the univariate case
and Pi in the multivariate case.

L( f , y∗) =


∑N

i=1

(∑
xn∈X\X( f (xn) − y∗n)2 + µl2i

)
, if univariate;∑N

i=1

(∑
xn∈X\X( f (xn) − y∗n)2 + µ || Pi ||

)
, multivariate.

(5)

We denote by y∗ the training target vector composed of values
y∗n for input training samples xn, where xn ∈ X \ X are not data
centers, and N is the number of data centers, || · || denotes the
Frobenius norm in the multivariate case, and f (·) is the predic-
tive function following eq 2. At each iteration we perform one
gradient update step for all hyper-parameters, therefore, allow-
ing them to be jointly learned.

3.5.1. Univariate Multi-modal Kernel Optimization
The derivative of the loss with respect to the lengthscale per
center, li, for the univariate case is given by the following for-
mulation:

∂L( f , y∗)
∂li

=

N∑
i=1

 ∑
xn∈X\X

2( f (xn) − y∗n)

[
∂k̂(·, xn)
∂li

αi + k̂(·, xn)
(
−K̂−1 ∂K̂

∂li
K̂−1y

)]
+ 2µli

}
, (6)

∂k̂(·, xn)
∂li

=

 1
l3i

(x j − xn)(x j − xn)T k̂(x j, xn), x j ∈ X, j = i;

0, x j ∈ X, j , i.
(7)

∂K̂
∂li
=

(
∂k̂(·, xm)
∂li

)
xm∈X

, (8)

K̂−1 =
(
k̂(X,X) + σ2I

)−1
, (9)

α =
(
k̂(X,X) + σ2I

)−1
y, (10)

where we denote by X the data centers, K̂ represents the asym-
metric training kernel matrix, and y∗ is a vector of training tar-
gets y∗n for training samples xn ∈ X \X that are not data centers.
The lengthscale hyper-parameters, li, are estimated per training
data center rather than globally. 1.

3.5.2. Multivariate Multi-modal Kernel Optimization
In the multivariate case we learn a precision matrix, Pi, rather
than a scalar lengthscale per data center, xi ∈ X. Therefore, we
have to ensure that the precision matrix learned is symmetric.
For this, in the gradient computation, we apply the derivations
for symmetric matrices.

∂L( f , y∗)
∂Pi

=

[
∂L( f , y∗)
∂Pi

]
+

[
∂L( f , y∗)
∂Pi

]T

− diag
[
∂L( f , y∗)
∂Pi

]
(11)

For gradient computation, the only change in the multivariate
case is in the derivative of the kernels with respect to the per-
center precision matrices, Pi:

∂k̂(·, xn)
∂Pi

=

{
− 1

2 (x j − xn)T (x j − xn)k̂(x j, xn), x j ∈ X, j = i;
0, x j ∈ X, j , i.

(12)

∂K̂
∂Pi
=

(
∂k̂(·, xm)
∂Pi

)
xm∈X

. (13)

1A simple univariate torch implementation can be found at:
https://silvialaurapintea.github.io/code/gp.lua
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Fig. 2. Pixel intensity prediction from input normalized pixel location: (i) center-GP — standard GP trained on training centers; (ii)
univariate AGP — proposed asymmetric model using per-center univariate lengthscale in the kernel — eq. 3; (iii) multivariate AGP —
proposed asymmetric model using per-center multivariate legnthscale — eq. 4; (iv) losses — training and validation losses on this data.

In this case, an additional cone projection step Weinberger et al.
(2009) is applied after each update to ensure that the precision
matrix remains positive definite.

3.6. Model Properties

We analyze the properties considered in Bellet et al. (2015),
from the metric learning perspective:
– Learning paradigm. Fully supervised, as we learn from train-
ing data the best lengthscale hyper-parameters with respect to
the L2 prediction loss.
– Form of metric. Non-linear and local with respect to the pre-
dictive function. Different metrics are learned for different re-
gions in the target space.
– Scalability. Scales with the number of data centers in the uni-
variate case, because the kernel matrix is computed over the
data centers. Thus, is more efficient than using all training
samples. In the multivariate case, we learn a precision matrix,
and the method scales also with the number of data dimensions,
making it more difficult to optimize.
– Optimality of the solution. Our learning formulation, given in
equations 6 and 11, is a non-convex function with respect to the
hyper-parameters and a global optimum is not guaranteed. For
this reason we use an additional validation set during training
on which we select among the local optima.

4. Illustrative Results

Figure 2 illustrates the need for the asymmetric model. If all
samples share the same kernel metric, figures 2.(ii) and 2.(iii)
would not be possible. When restricting our attention to few
training samples, we lose the information of how the target
function varies between the samples, yet the per-center kernel
metrics help recover this information. In this illustration, we fix
the training centers to the centers of the two ellipses. The [0, 1]-
normalized pixel coordinates are the input features, and the
pixel intensities are the targets. We visualize three models: (i)
center-GP — standard GP on the 2 data centers, and the optimal
lengthscale hyper-parameter is found through cross validations
over 100 randomly sampled training pixels; (ii) univariate-AGP
— using equation 3 with the optimal lengthscale per center es-
timated as in subsection 3.5.1, and (iii) multivariate-AGP —
using equation 4. In figure 2 the univariate asymmetric model
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Fig. 3. Numeric consistency: In red, the Euclidian distance between
the estimated hyper-parameters by our method, using two data
centers, and the optimal hyper-parameter of the Gaussian Process
we have sampled from. We plot standard deviation over 3 repeti-
tions. In blue, the distance between the optimal hyper-parameter
and the one of the standard GP on the two centers. With more
data, our estimated lengthscales approach the optimal value.

estimates better the sizes of the two blobs, when compared to
its center-based counterpart, while the multivariate asymmetric
model has the lowest error, as it learns both the sizes and the
shapes of the blobs. We also show the training and validation
losses in figure 2.(iv).

We additionally analyze the consistency of our approach, nu-
merically. For this, we sample on a uniform grid a standard 1D
Gaussian Process with a fixed lengthscale set to 13.5. The aim
is to test if the lengthscales estimated by our method tend to the
true lengthscale of the Gaussian Process from which we have
sampled, as we add more training data. We use two data centers
for the kernel computation. Figure 3 shows in red the Euclidian
distance between the two estimated hyper-parameters by our
method and the optimal one. We report standard deviation over
3 repetitions. In blue, we show the distance between the opti-
mal hyper-parameter and the one estimated by the standard GP
through grid search, using two data centers. With more train-
ing samples, our estimated lengthscale parameters approach the
optimal value. The distance does not converge to 0 as we use
only two data centers in the training kernel matrix.

5. Experiments

5.1. Experimental Setup
Data splitting and center selection. Table 1 depicts the
specifics of each dataset used. Each dataset is split into trainval
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and test, following the standard way. Given the non-convexity
of the problem, we evaluate the hyper-parameters on a small
validation set after each training epoch, and keep the best. For
all datasets the validation set is obtained as 100 random samples
taken from the trainval dataset. These samples are not used for
defining the data centers or for training data statistics. Different
center selection approaches are considered in section 5.2. We
standardize the data to zero mean and unit variance per dimen-
sion, by extracting statistics over the training data excluding the
validation set.

Parameter setting. In the SGD, the initial learning rate is set
by looking at the plots of validation and training losses during
training. We use a starting learning rate of 1.0e−5 for So2, Temp
and Airlines datasets, and an initial learning rate of 1.0e−11 for
UCSD and VOC-2007, where the data dimensionality is consid-
erably higher. We use batch-SGD with mini-batches of 64 ran-
domly selected training samples. Given the non-convexity of
the solved problem, we make use of momentum and set it to 0.9
as advised in Sutskever et al. (2013). The regularization term
in the loss function, µ, is set to 1.0e − 5. For the standard GP
models as well as for center-GP — Gaussian Process trained on
data centers only — we estimate the model hyper-parameters by
performing grid-search and evaluating on the validation sam-
ples. We use the same procedure for initializing our per-center
lengthscales, before optimizing them in the SGD.

Evaluation metric. For comparison with existing work we re-
port MSE (Mean Squared Error), RMSE (Root Mean Squared
Error), or NRMSE (Normalized Root Mean Squared Error) de-
fined as:

NRMSE(y, y∗) =

√√
1
N

N∑
n

(yn − y∗n)2

var(ytrain)
, (14)

where var(ytrain) is the label variance on the training data, y∗ are
the test targets, and y the predictions.

5.2. Center Selection

Here we analyze the effect of the center selection method on the
overall performance of our method. For this we use the Temp
dataset which has 106 dimensions per sample. We consider four
center selection methods: K-Means, random sampling, spectral

Table 1. Datasets statistics.
Baseline #Trainval #Test #Features

Temp Titsias and Lázaro-Gredilla (2013) 7,117 3,558 106
So2 Titsias and Lázaro-Gredilla (2013) 15,304 7,652 27
Airlines Hoang et al. (2015) 2,055 K 102 K 8
UCSD Chan and Vasconcelos (2012) 1,200 2,800 1,000
VOC-2007 Chattopadhyay et al. (2017) 5,011 4952 1,000

Table 2. The effect of the center selection method when considering:
K-means, random sampling, spectral clustering and GMM center
definition on the Temp dataset.

# Centers NRMSE Scores

K-Means Sampling Spectral GMM

10 0.602 0.557 0.579 0.606
50 0.482 0.467 0.482 0.523

Table 3. Evaluation of the proposed models — univariate-AGP and
multivariate-AGP on the large scale dataset used in Hoang et al.
(2015). Our proposed models are trained on 50 data centers. We
compare our results with the methods analyzed in Hoang et al.
(2015): PIC, FITC, DTC.

AGP PIC FITC DTC

Univariate Multivariate

30.093 (± 2.285) 30.805 (± 2.950) 33.351 39.530 39.531

clustering and GMM (Guassian Mixture Model). We test on our
univariate-AGP — using univariate individualized lengthscales
— with 10 and 50 centers, respectively.

Table 2 indicates that the choice of the centers is not essen-
tial as all methods perform similar. Given that the strength of
the model is in learning individualized hyper-parameters and
less in the method used for defining centers, in our subsequent
experiments we rely on k-means clustering.

5.3. Multi-modal Approach Evaluation
Table 4 depicts the results of our approaches on the So2 and
Temp datasets when compared to Titsias and Lázaro-Gredilla
(2013) and with the standard Gaussian Process model. The
gain brought by the multi-modal asymmetric methods over the
center-based Gaussian Process and the standard Gaussian Pro-
cess is more obvious for the Temp dataset. This can be ex-
plained by the larger number of dimensions to learn from, in the
multivariate case. On both datasets, the proposed models out-
perform Titsias and Lázaro-Gredilla (2013), while using only
50 data centers.

The performance decreases slightly with the increase in the
number of data centers for the multivariate asymmetric models.
This is due to the model being trained for the same number of
iterations as the univariate case, while having to learn a larger
number of parameters — a precision matrix of size D×D. With
the increase in data dimensionality, the multivariate model be-
comes considerably slower and harder to optimize. This repre-
sents a drawback of the proposed multivariate approach. The
variability in the target space also affects the ease with which a
good solution is found.

5.4. State-of-the-art Comparison
5.4.1. Large Scale Regression Problem
Here, we consider a more challenging task where the number
of training samples is markedly high. We compare against ef-
fective state-of-the-art methods that focus on the same problem
as we do — representing the data using an informative subset
while retaining the descriptiveness of the model Hoang et al.
(2015). We use the Airlines dataset of Hoang et al. (2015)
containing over 2, 000, 000 training samples. The models con-
sidered are: DTC (Deterministic Training Conditional) Seeger
et al. (2003), FITC (Fully Independent Training Conditional)
Snelson and Ghahramani (2005), and PIC (Partially Indepen-
dent Conditional) Snelson and Ghahramani (2007). For evalu-
ating our models we repeat each experiment three times and re-
port the mean RMSE (Root Mean Squared Error) together with
the standard deviation. Table 3 shows that our proposed AGP
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Table 4. NRMSE on the So2 and Temp datasets for the 3 methods: center-GP — trained on training centers only, univariate-AGP — the
univariate asymmetric model using the kernel metrics defined in eq. 3 and, multivariate-AGP — the multivariate asymmetric model with
kernel metrics as defined in eq. 4. Results compared with Titsias et al. Titsias and Lázaro-Gredilla (2013) and GP — standard GP trained
on randomly sampled examples. We show in bold the results outperforming the baseline and underline the best result.

# Samples NRMSE

Titsias et al. 2013 100 1.004
GP 100 0.985

center-GP 50 0.984
univariate-AGP 50 0.846
multivariate-AGP 50 0.863

center-GP 10 0.985
univariate-AGP 10 0.818
multivariate-AGP 10 0.808

# Samples NRMSE

Titsias et al. 2013 100 0.489
GP 100 0.533

center-GP 50 0.559
univariate-AGP 50 0.482
multivariate-AGP 50 0.445

center-GP 10 0.642
univariate-AGP 10 0.602
multivariate-AGP 10 0.493

(a) So2 data evaluation. (b) Temp data evaluation.

Table 5. RMSE results on the VOC-2007 general object counting
dataset. The first two “glance” models use global image features
learned in a deep learning framework, which is similar to us. The
last two models use local information by dividing the image into a
3×3 grid and extracting deep learning features from each cell. Our
method outperforms the models relying on global image features.

Chattopadhyay et al. (2017) glance-noft-2L 0.50 (± 0.02)
Chattopadhyay et al. (2017) glance-sos-2L 0.51 (± 0.02)

Chattopadhyay et al. (2017) aso-sub-ft-1L-3×3L 0.43 (± 0.01)
Chattopadhyay et al. (2017) seq-sub-ft-3×3 0.42 (± 0.01)

AGP-25 Univariate 0.43 (± 0.002)

models perform well when dealing with a prohibitive number
of training samples. Our approach outperforms existing meth-
ods Seeger et al. (2003); Snelson and Ghahramani (2005, 2007)
while using only a limited number of data centers.

5.4.2. Realistic Data: Counting from Images
We test our regression approach on two realistic image datasets
— UCSD Chan and Vasconcelos (2012) and VOC-2007 Ever-
ingham et al. — for people and generic object counting, respec-
tively. Given the image data, we rely on deep learning features.
We extract 1,000 dimensional features as the output of the fully-
connected layer of the ResNet-50 He et al. (2016) pretrained on
ImageNet Russakovsky et al. (2015). For computational effi-
ciency here we use only the univariate version of our approach
with 25 centers, since the multivariate version requires optimiz-
ing a precision matrix of size 1, 000 × 1, 000.

Pedestrian counting. Figure 4 shows the results of our ap-
proach on the realistic problem of pedestrian counting from im-
ages on the UCSD dataset, together with the training and val-
idation losses. We compare with Dalal and Triggs (2005) that
uses low level image features, Felzenszwalb et al. (2008) re-
lying on a person detection method specifically trained for the
task, and Chan and Vasconcelos (2012) which employs motion
segmentation masks. Unlike these methods, we do not use ei-
ther motion segmentation masks or class specific detectors. We
use only global image features extracted from a pretrained deep

network, and we manage to obtain comparable performance
with Chan and Vasconcelos (2012), while greatly outperform-
ing Dalal and Triggs (2005); Felzenszwalb et al. (2008).

Generic object counting. In table 5 the goal is generic object
counting on the VOC-2007 generic object dataset. We compare
with the set of models proposed in the very recent deep learning
method of Chattopadhyay et al. (2017). Our features are ex-
tracted from a pretrained deep learning model, while theirs are
specifically fine-tuned for this counting task. We outperform
their “glance” models, which similar to us, rely on global im-
age features. We additionally obtain comparable performance
to aso-sub-ft-1L-3×3 and seq-sub-ft-3×3 which rely on local
image information, as they divide each image into a 3×3 grid

(a) Squared losses on UCSD.

0 100 200 300 400

(b) MSE on UCSD.

Dalal and Triggs (2005) 39.75
Felzenszwalb et al. (2008) 24.72
Chan and Vasconcelos (2012) 9.95

AGP-10 Univariate 16.37 (± 0.41)
AGP-25 Univariate 13.90 (± 0.05)

Fig. 4. (a) MSE results on the UCSD pedestrians counting dataset
when compared with three prior works Dalal and Triggs (2005);
Felzenszwalb et al. (2008); Chan and Vasconcelos (2012). We ob-
tain comparable performance with prior work, though we use only
global deep learning features, while Chan and Vasconcelos (2012)
relies on motion segmentation masks. (b) The training and valida-
tion squared losses on the UCSD pedestrian counting dataset.
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and extract features from each cell. It is worthwhile noting that
we use only 25 data centers for computing the kernel matrix,
and achieve comparable performance with methods relying on
stronger features. These results support our approach.

6. Conclusions

This work brings forth an asymmetric kernel for the Gaussian
Process model. This encompasses three components: (i) train-
ing on training centers only, (ii) learning individualized kernel
metrics per center and, (iii) extending the lengthscale hyper-
parameter to a precision matrix, thus learning not only the ap-
propriate size but also the shape in the kernel metric. Due
to the limitations imposed by the dependency between per-
center hyper-parameters, we discriminatively solve the prob-
lem through metric learning. Individualized kernel metrics en-
tail the loss of the symmetry in the kernel matrix. However,
this has the gain of better describing the target function in the
neighborhood of the center points, used for kernel computation.
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