
FEATURELESS: BYPASSING FEATURE EXTRACTION IN ACTION CATEGORIZATION

S. L. Pinteaa, P. S. Mettesa

aIntelligent Sensory Information Systems,
University of Amsterdam,
Amsterdam, Netherlands

J. C. van Gemerta,b, A. W. M. Smeuldersa

bComputer Vision Lab,
Delft University of Technology,

Delft, Netherlands

ABSTRACT

This method introduces an efficient manner of learning ac-
tion categories without the need of feature estimation. The
approach starts from low-level values, in a similar style to
the successful CNN methods. However, rather than extract-
ing general image features, we learn to predict specific video
representations from raw video data. The benefit of such an
approach is that at the same computational expense it can pre-
dict 2D video representations as well as 3D ones, based on
motion. The proposed model relies on discriminative Wald-
boost, which we enhance to a multiclass formulation for the
purpose of learning video representations. The suitability of
the proposed approach as well as its time efficiency are tested
on the UCF11 action recognition dataset.

Index Terms— Multiclass Waldboost, video representa-
tions, action recognition, feature learning.

1. INTRODUCTION

Ever since the bag-of-words representation of visual informa-
tion was proposed [1], the focus has been on feature robust-
ness [2, 3, 4]. The popular deep CNN (Convolutional Neural
Networks) [5, 6, 7] have effectively replaced the handcrafted
descriptors with network features. Such networks have been
successfully applied in the domain of action recognition [8, 9,
10, 11]. More recently, CNN features are used together with
Fisher Vectors to build stronger video representation [12, 13].
However, competitive performance for action recognition is
still achieved by video representations relying on appearance
and motion descriptors [14, 15, 16]. This work proposes a
manner of learning a given video representation, rather than
learning better features to be subsequently used in the video
representation, as in the case of CNN features. Illustrated in
figure 1 is the proposed method that bypasses feature compu-
tation and, instead, learns the final video representation.

This work presents a proof of concept which challenges
the idea of discarding the feature estimation and learning in
one step the transition from low-level data to the final video
representation. The premise of this paper is to keep the ad-
vanced analysis as simple as possible, therefore, here we fo-
cus on the more simplistic bag-of-words model. We research
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Fig. 1. Going from raw video values to higher level features.
We propose bypassing feature computation by learning the mapping
from raw input data to any type of higher order video representation
— i.e. based on appearance, motion descriptors.

how much of this classic pipeline can be discarded while still
achieving comparable performance. In the proposed method
we learn from low-level values to predict a known codebook
assignment — thus, at test time neither the image descriptors,
nor the codebook need to be defined. Motion features as well
as appearance features together with their codebook assign-
ments are bypassed in the featureless method.

We rely on boosting to solve the learning problem. The
gain of starting from boosting techniques is their well known
quality of being specifically appropriate for real time appli-
cations [17, 18]. This is a desirable property in the context
of videos. We start from individual values and build a strong
classifier by incorporating multiple local cues in a boosting
framework. In this work, we propose a straightforward dis-
criminative multiclass extension of Waldboost [19]. This is
employed to learn the mapping from the low-level input vi-
sual information to the desired representation.

Tasks such as large scale video categorization and event
recognition still rely on the use of large codebooks and de-
scriptor extraction [20, 21]. Moreover, the action recogni-
tion field deals with large amounts of data whose processing
comes at considerable computational costs. This work can
prove useful for such approaches, as it discards descriptor ex-
traction and the need of codebooks or other video encodings
such as Fisher Vectors at test time. Figure 2 displays the pro-
posed framework in the context of action recognition.
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Fig. 2. We start from input videos, we subsequently extract frame patches to be used as training samples for the multiclass Waldboost.
During training we estimate appearance and motion descriptors — HOG and HOF and 3D HOF — and we build a codebook which defines
the training labels. For each low-level patch extracted from an input video frame, we learn its final codebook assignment in the proposed
multiclass Waldboost extension. At test time we discard the codebook and predict in one step, from low-level patches, the final codebook
assignment which is subsequently input to an SVM for the final video categorization.

2. RELATED WORK

In the literature the focus has been on either more compact
and robust descriptors [2, 3, 4], or on stronger video encod-
ings [22, 23, 24]. The effective CNN methods are able to
produce strong image features [5, 6, 7]. Followed by a subse-
quent video encoding step, these methods represent the state-
of-the-art in action recognition [12, 13]. In this work we do
not focus on learning either the image/frame features or the
video encoding, but instead, we focus on learning a time-
efficient classifier that bypasses these steps and retrieves the
final video representation.

We use as starting point the real-valued multiclass Ad-
aboost [25]. This is extended in a discriminative manner to
determine at each iteration whether to continue with the eval-
uation of the next weak classifier or stop. Thus, it allows for
fast decision making as not all weak classifiers need to be
employed. As described in section 3.1, this corresponds to a
discriminative multiclass extension of Waldboost [19].

In the action recognition literature, efficiency has been
a main focus [26, 27]. Proposed methods are ranging from
faster features, based on faster flow computation, to faster
video encodings, based on additive approximations. Methods
such as [9, 11, 28, 29] have focused on improving the CNN
architecture to achieve better performance in the context of
action recognition. Yet, with the gain in performance comes
also a gain in speed as deep neural networks are known to be
fairly efficient at test-time. However, when focusing on the
performance gain, methods [14, 15, 16] successfully rely on
handcrafted visual descriptors such as HOG, HOF and MBH,
and video encodings such as Fisher Vectors and VLAD. In
this work we propose to combine the best of both worlds —
allow to obtain video representations similar to the ones based
on visual descriptors such as HOF, HOG and MBH while not
having to estimate these descriptors or define the video en-
coding. Therefore, we bypass feature computation and video
encoding and learn a direct mapping from low-level data.

3. LEARNING THE MAPPING

3.1. Multiclass Extension of Walboost

Data and Labels. We use grayscale pixel values as input to
the boosting pipeline. Given and input image patch, we per-
form L1 normalization over the patch. During the boosting
training we sample randomly

√
D dimensions, where D is

the total number of data dimensions. For stability, we repeat
the selection step

√
D number of times and keep the feature

dimensions that provide the best performance on the training
data. We use these dimensions to train a weak classifier. Dur-
ing training, each patch of gray values is associated with a
descriptor which is subsequently projected on a codebook in
order to retrieve the codebook assignment. The codebook as-
signment defines the labeling for the multiclass Waldboost.

Weak Learners. The weak learners are a set of M multi-
class decision trees with probabilistic outputs, pm(·), where
m ∈ {1, ..M} is the tree index. The maximum depth of each
tree is set to 15, as standardly done in literature. Each deci-
sion tree predicts aK dimensional probabilistic output, where
K is the number of classes — codebook size. As suggested
in [25], we weight the decision boundary in each leaf by the
current weights of the training samples falling in that leaf:

pmk (xi) =

∑
i∈L wi(y

k
i = 1)∑

i∈L wi
,∀k ∈ {1, ..K}, (1)

where L— the leaf reached by sample xi, wi — the weight
associated with xi, and yki the label of xi and class k. The
weights of the training samples are only used in this step and
reset for each weak learner.

Data Pool Sampling. We follow the standard approach and
initialize the weights, w, with 1

N , where N is the number of
training samples for the current weak classifier. After training



each weak classifier the weights are updated as follows:

wi = wi exp

(
−K − 1

K

K∑
k

yki log pmk (xi)

)
, (2)

where the labels for the current sample are:

yk
′

i =

{
1, if k′ = k,
−1

K−1 , otherwise.
(3)

During training we sample a 10th of the complete number of
training patches to be used for learning each weak classifier.
Following [30], we use the QWS+trimming (Quasi-random
Weighted Sampling with trimming) for this step. Although
each weak classifier is trained on a subset of the training data,
the weight update (eq. 2) is applied over the predictions of the
weak classifier on the complete data.

Strong Classifier. Following [25], the probabilities of each
weak classifier are transformed into real-valued scores:

smk (xi) = (K − 1)

(
log pmk (xi)−

1

K

K∑
k′

log pmk′(xi)

)
. (4)

The final probabilistic prediction is obtained by taking the
softmax over the sum of the scores of the weak classifiers:

sk(xi) =

M∑
m

smk (xi), (5)

pk(xi) =
exp(sk(xi))∑K
k′ exp(sk′(xi))

. (6)

Discrimiantive Multiclass Waldboost. Rather than testing
all the weak classifiers to reach a decision, we can determine
if the strong classifier is sufficiently confident in its prediction
and stop without evaluating the subsequent weak classifiers.
Waldboost [19] selects a stopping threshold for each weak
classifier. These thresholds are learned over the strong classi-
fier scores up to the current iteration.

We propose an intuitive deterministic approach to learn-
ing stopping thresholds. After training each weak classifier
on its current data pool, we employ it together with all the
preceding weak classifiers to obtain a strong prediction on
a validation set, denoted by x̄. The strong classifier scores
(eq. 5) up to the current step on the validation set are input to
a new decision tree. We train one such stopping decision tree
per weak classifier,m. The stopping classifiers returnK class
probabilities. We choose decision trees as stopping classifiers
for both consistency as well as efficiency.

At test time, the strong classifier scores up to the current
step, m, are passed on to the current decision tree used for
stopping. The stopping classifier decides whether to stop or
continue with the estimation of the next boosting weak clas-
sifier. This is done by evaluating the output of the stopping

HOF Adaboost Waldboost 3D HOF Waldboost
HOG/HOF HOG/HOF 3D HOF

Time/Frame 0.60 s 4.00 s 0.60 s 7.50 s 0.60 s

Table 1. Run-times of the proposed featureless method versus de-
scriptor extraction. The proposed method is on par with optimized
HOF descriptor estimation and ten fold faster than 3D HOF.

classifier against a fixed desired class probability, α:

max
k

StopM
′

k

M ′≤M∑
m=1

smk (x̄i)

 ≥ α, (7)

where StopM′

k (·) — stopping probability for class k at M ′.

3.2. Computational Requirements
The speed of dense descriptor extraction has improved con-
siderably as most of the available implementations rely on in-
tegral images [31]. However, when the temporal dimension is
used — 3D descriptors, or motion information — flow-based
descriptors, the computational requirements increase. Table 1
shows the times for the computation of different descriptors
as well as the Adaboost/Waldboost run-times for predicting
on the patches of a complete frame. The runtime numbers
are obtained running a single-thread, unoptimized implemen-
tation in C++. The Waldboost prediction is as fast as the HOF
descriptor extraction over the same frame. However, when
predicting a codebook assignment based on 3D motion fea-
tures, boosting approaches are faster while Waldboost is one
order of magnitude faster.

4. EXPERIMENTS

We compare against the representations we learn from —
BOW (bag-of-words) with k-means codebooks. The code-
books are extracted over HOF, HOG and 3D HOF descrip-
tors and used to define the multiclass Waldboost labels. More
powerful representation such as Fisher encodings or just the
first fully connected layer in a pretrained CNN could also be
used, by applying a discretization step. However, the aim is to
keep the analysis simple and test the feasibility of transition-
ing in one step from the low-level features to the final video
representation. Therefore, in our experimental setup we use
small codebooks and input grayscale patches.

4.1. Experimental Setup
Experiment 1 employs codebooks of only 100 dimensions
obtained by applying k-means over 100,000 descriptors and
compare against the standard BOW baseline. For the 3D de-
scriptors we use larger codebooks — 1000 D — which are
also obtained by employing k-means over a set of 100,000
training descriptors. The 3D motion descriptors are com-
puted over 8 pairs of frames. Experiment 2 discards the
codebook altogether from both training and test and consider



HOG HOF 3D HOF

BOW Waldboost BOW Waldboost BOW Waldboost BOW & Waldboost

MAP 44% 41% 37% 32% 45% 36% 50%

Table 2. MAP (mean average precision) scores on UCF11 when using the standard BOW video representation as compared to the represen-
tation obtained from the proposed multiclass Waldboost predictions. The results of the featureless approach are comparable with the baseline,
while the combination of the two gains in performance.

Linear SVM Adaboost Waldboost

MAP 16% 41% 41%

Time/frame 15.00 sec 4.00 sec 0.60 sec

Table 3. Performance of different learning algorithms when learn-
ing the mapping from input grayscale values to the HOG codebook
assignment. The proposed multiclass Waldboost method achieves
better performance than linear SVM and at the same time gains in
efficiency over Adaboost at no loss in performance.

each descriptor to be its own cluster center. All experiments
use 1000 weak classifiers, each trained on 24 randomly sam-
pled data dimensions. The patch sizes for descriptor extrac-
tion as well as for boosting are of 24×24 px. For the mul-
ticlass Waldboost we set the stopping threshold, α, to .97
as this proved effective in practice. All experiments report
MAP scores (Mean Average Precision) on UCF11 [32] action
recognition dataset.

4.2. Experiment 1: Featureless
4.2.1. Experiment 1.1: Waldboost vs. Other Algorithms

Table 3 displays comparative results when learning the map-
ping from grayscale input values to the HOG codebook as-
signment. Waldboost manages to outperform by a large mar-
gin the linear SVM classifier as it focuses the learning on the
informative data dimensions. At the same time, the proposed
multiclass Waldboost brings gain in efficiency at no loss in
performance when compared with Adaboost, although it ana-
lyzed only a subset of the weak classifiers.

4.2.2. Experiment 1.2: Learning vs. Feature Extraction

This experiment tests the feasibility of the featureless aim.
Given a set of grayscale input patches together with their
codebook assignments over the associated descriptors, it
trains a multiclass Waldboost. At test time no descriptors or
codebooks are used, thus, obtaining a featureless represen-
tation. Table 2 depicts the results obtained by the proposed
method when compared to the classic BOW approach. The
performance of BOW is slightly better than Walboost. The
work of [33] reports an accuracy of 55.46% on BOW with
SVM and SIFT descriptors on a codebook of 500 dimen-
sions. Our methods based on BOW and Walboost over HOG
features using a codebook of only 100 dimensions obtains a
competitive accuracy of 43.18% which corresponds to a mean

BOW Codebookless

Adaboost Waldboost

MAP 44% 41% 37%

Table 4. MAP scores on UCF11 for the BOW baseline on a
100D codebook as well codebookless Adaboost and Waldboost —
no codebooks are used during training. The learned mapping pre-
dicts patch IDs rather than codebook IDs. The boosting methods
manage to achieve comparable performance to the baseline despite
discarding both descriptors and codebooks.

average precision of 41%, as listed in table 2. However, when
combining the two representation — as in the case of 3D
HOF, the combined representation exceeds in performance
both BOW and Waldboost. This indicates that despite using
the same starting point — the same codebook and descriptor
assignment, the BOW and Waldboost representations encode
complementary information.

4.3. Experiment 2: Featureless and Codebookless
Table 4 displays the action recognition performance when the
boosting techniques learn from both a featureless as well as
codebookless representation. Each patch is considered to be
the center of its own cluster, thus the mapping learns to pre-
dict patch IDs rahter than codebook IDs. Out of the 100,000
patches considered, only ≈100 unique patch IDs are begin
predicted, the rest having zero predictions. Both Adaboost
as well as the proposed multiclass Waldboost still manage to
learn the underlying structure in the data, despite not making
use of either descriptors or codebooks at test-time.

5. CONCLUSIONS

This work analyzes whether we can bypass feature extraction
and still attain comparable performance with the framework
we learn from. In search for the simplest possible method, we
learn a mapping from grayscale values to existing representa-
tions such as codebooks. A straightforward multiclass exten-
sion of Waldboost is brought forth for learning this mapping.
The efficiency as well as the performance of the proposed
method are tested in the context of action recognition. More-
over, we also consider video representations based on motion
features, as well as discarding the codebook altogether and
learning both a featureless and codebookless mapping.
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