

Featureless: Bypassing Feature Extraction In Action Categorization

S. L. Pintea*, P. S. Mettes[•], J. C. van Gemert^{*}, A. W. Smeulders[•]

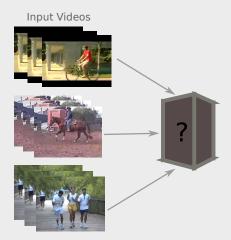
*Computer Vision Lab, Delft University of Technology, Netherlands • Intelligent Sensory Information Systems, University of Amsterdam, Netherlands

What is Action Categorization?

Input Videos

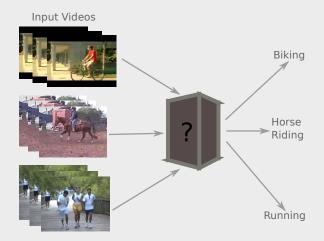
Disregards tasks s.a. action segmentation, action localization.

What is Action Categorization?



Disregards tasks s.a. action segmentation, action localization.

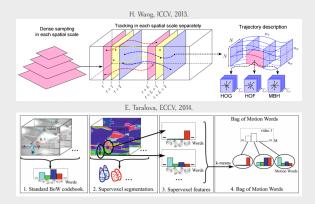
What is Action Categorization?



Disregards tasks s.a. action segmentation, action localization.

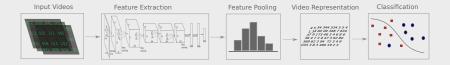
Standard Classic Approaches

Variations of features over time:

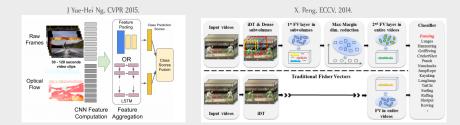


Problem: Feature extraction is slow and takes space to store.

Standard Deep Net Approaches



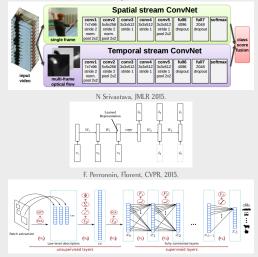
Variations of pooling over frames:



Problem: Still extracts features and aggregates them, but better features.

Deep Learning Approaches

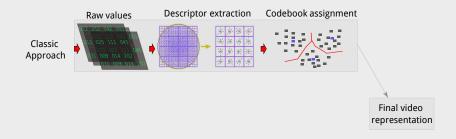
K Simonyan, NIPS 2014.



Slowly bridging the gap in performance.

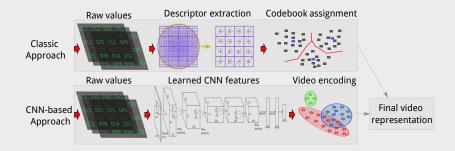
Is Feature Extraction Needed at Test-time?

• Classic: extract handcrafted features and use them in a video representation.



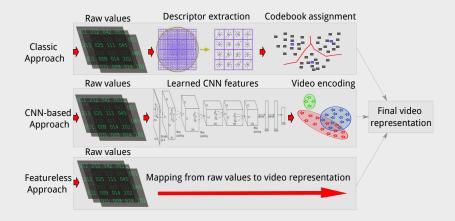
Is Feature Extraction Needed at Test-time?

• CNN-based: extract CNN features and use them in a video representation.



Is Feature Extraction Needed at Test-time?

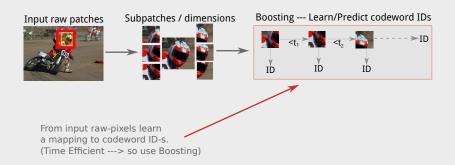
• Featureless: predict codeword IDs and compute a first-order video representation.



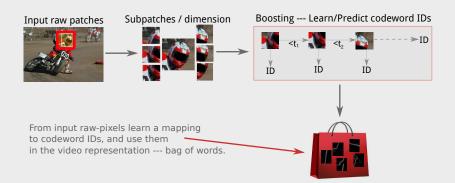
Proof of concept: discard the features and learn their statistics instead.

From input raw-pixel values.

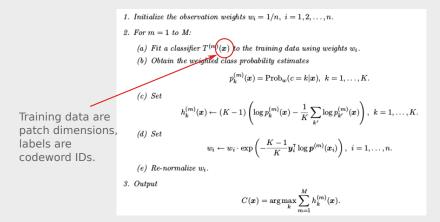
Proof of concept: discard the features and learn their statistics instead.



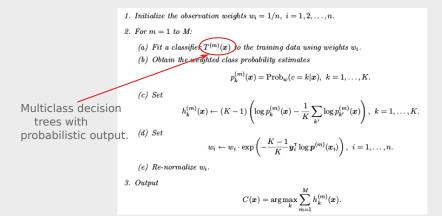
Proof of concept: discard the features and learn their statistics instead.



We train the real version of the multiclass Adaboost [J. Zhu, 2009]:



We train the real version of the multiclass Adaboost [J. Zhu, 2009]:



We train the real version of the multiclass Adaboost [J. Zhu, 2009]:

- 1. Initialize the observation weights $w_i = 1/n, i = 1, 2, ..., n$.
- 2. For m = 1 to M:
 - (a) Fit a classifier T^(m)(x) to the training data using weights w_i.
 - (b) Obtain the weighted class probability estimates

$$p_k^{(m)}(x) = \text{Prob}_w(c = k | x), \ k = 1, ..., K.$$

(c) Set

 $h_k^{(m)}(\boldsymbol{x}) \leftarrow (K-1) \left(\log p_k^{(m)}(\boldsymbol{x}) \right) \frac{1}{K} \sum_{k'} \log p_{k'}^{(m)}(\boldsymbol{x}) \right), \ k = 1, \dots, K.$

weighted in each leaf by the sample (d) Set weight:

$$p_k^m(\mathbf{x}_i) = \frac{\sum_{i \in \mathcal{L}} w_i(y_i^k = 1)}{\sum_{i \in \mathcal{L}} w_i}$$

$$w_i \leftarrow w_i \cdot \exp\left(-\frac{K-1}{K} \boldsymbol{y}_i^{\mathsf{T}} \log \boldsymbol{p}^{(m)}(\boldsymbol{x}_i)\right), \ i = 1, \dots, n.$$

(e) Re-normalize w_i.

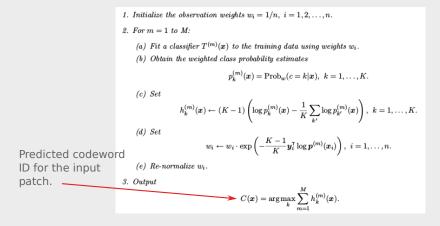
3. Output

$$C(x) = \arg \max_{k} \sum_{m=1}^{M} h_{k}^{(m)}(x).$$

We train the real version of the multiclass Adaboost [J. Zhu, 2009]:

1. Initialize the observation weights $w_i = 1/n, i = 1, 2, ..., n$. 2. For m = 1 to M: (a) Fit a classifier $T^{(m)}(\mathbf{x})$ to the training data using weights w_i . (b) Obtain the weighted class probability estimates $p_{k}^{(m)}(x) = \operatorname{Prob}_{w}(c = k | x), \ k = 1, \dots, K.$ (c) Set $h_k^{(m)}(\boldsymbol{x}) \leftarrow (K-1) \left(\log p_k^{(m)}(\boldsymbol{x}) - \frac{1}{K} \sum_{i \neq j} \log p_{k'}^{(m)}(\boldsymbol{x}) \right), \ k = 1, \dots, K.$ (d) Set \rightarrow $w_i \leftarrow w_i \cdot \exp \left(-\frac{K-1}{K}y_i^T \log p^{(m)}(x_i)\right), i = 1, ..., n.$ Weight updates. (e) Re-normalize w_i. 3. Output $C(\boldsymbol{x}) = \arg \max_{k} \sum_{m=1}^{M} h_{k}^{(m)}(\boldsymbol{x}).$

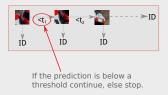
We train the real version of the multiclass Adaboost [J. Zhu, 2009]:



• Can we make it even faster?

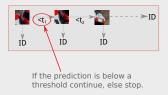
- Can we make it even faster?
- Early stopping Waldboost [J. Sochman, CVPR, 2005].

- Can we make it even faster?
- Early stopping Waldboost [J. Sochman, CVPR, 2005].



▶ But Waldboost finds stopping thresholds for 2-class Adaboost only.

- Can we make it even faster?
- Early stopping Waldboost [J. Sochman, CVPR, 2005].



- But Waldboost finds stopping thresholds for 2-class Adaboost only.
- Train on unused training data a stopping decision tree that gets as input the prediction of the strong classifier up to now.

$$\max_{k} \left(\operatorname{Stop}_{k}^{M'} \left(\sum_{q=1}^{m' \leq M} s_{k}^{m}(\bar{\mathbf{x}}_{i}) \right) \right) \geq \alpha$$

The strong classifier prediction up to M.

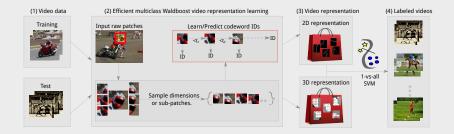
• Get a set of training videos and test videos.

During:

- training: extract (patch, codeword-ID) pairs;
- testing: only patches and predict codeword-IDs in the multiclass Waldboost.

• Compute a video representation with the predicted codeword-IDs.

• Use the video representation for action categorization.



Experimental Setup:

- ▶ UCF11 dataset. [J. Liu, CVPR, 2009]
- ► Codebook with K-means over 100 K descriptors.
- ► Gray-scale patches of 24*x*24 dimensions.
- ▶ 1000 weak classifiers, trained on 24 random dimensions.
- Stopping threshold α set to .97.

Waldboost word prediction versus other learning algorithms

► Setup:

- ▶ 100 dimensional codebook.
- ► HOG descriptors for codebook construction.
- ► Results:

	Linear SVM	Adaboost	Waldboost
MAP	16%	41%	41%
Time/frame	15.00 sec	4.00 sec	0.60 sec

Learning versus feature extraction

- ► Setup:
 - ▶ 100 dimensional codebook for HOG, HOF.
 - ▶ 1000 dimensional codebook for 3*D*-HOF.
 - ► 3*D*-HOG descriptors over 8 frames.
- Results:

	HOG		HOF	
	BOW	Waldboost	BOW	Waldboost
MAP	44%	41%	37%	32%

3D HOF				
BOW	Waldboost	BOW & Waldboost		
45%	36%	50%		

Learning featureless and codebookless representations

- ► Setup:
 - ▶ From the 100 K patches each is considered to be a data center.
 - Only \approx 100 patches have test-time patches assigned to them.
- Results:

	BOW	Codebookless	
		Adaboost	Waldboost
MAP	44%	41%	37%

Conclusions

- Present a proof of concept showing that we can bypass feature extraction.
- ► Still obtain comparable performance with the representation we learn from.
- ▶ To this end, a straightforward Waldboost multiclass approach is proposed.
- ► Finally, we consider both featureless and codebookless representations.

Thank you

