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Eulerian versus Lagrangian Motion

δPhase / δt

Optical Flow

Input Video Frames

I Lagrangian motion (optical flow) estimates the changes in position over time
— match points/patches.

I Eulerian approach (phase variations over time) flux statistics over time
— number of measurements stays constant.
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Gains of Eulerian Motion

I No feature extraction and matching of patches between frames.
I No missing correspondences, rotating objects, occlusion.

Optical Flow

  Matching
=

I Constant number of measurements over time.
I Phase information is innate to the image.

δ Phase = - =

We focus on phase-based motion [Wadhwa et. al., SIGGRAPH, 2013].
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Phase-based Motion
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[Fleet et. al., IJCV, 1990] show that the temporal gradient of the phase over a
spatially band-passed video over time directly relates to the motion field.
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Phase-based Motion

I Local motion ↔ local edges with di�erent orientations.
I Using a steerable pyramid [Simoncelli, Trans. on Info. Theory, 1992] we

decompose the image into localized subbands.
I The local-phase variations over time, give the local motion.
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4 Phase Applications

1. Action Recognition
— Starting point: Two stream network [Simonyan et. al., CVPR, 2014].

2. Motion Prediction in Static Images
— Starting point: RCNNs [Liang et. al., CVPR 2015], [Pinheiro et.al., ICML
2014].

3. *Motion Transfer in Static Images
— Starting point: Artistic style transfer [Gatys et. al., 2015].

4. *Motion Transfer in Videos
— Starting point: Artistic style transfer in videos [Ruder et. al., 2016]
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4 Phase Applications

I Convolve the input frame/image with the steerable complex filters.

Input R
GB

C
o
m

p
le

x
 S

te
e
ra

b
le

 P
y
ra

m
id

 

7 / 13



4 Phase Applications

I Get oriented amplitude and phase at di�erent scales.
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4 Phase Applications

I Add the image appearance info into a deep net formulation.
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Phase-based Action Recognition
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Experimental Setup:
I Compare against [Simonyan et. al., CVPR, 2014].
I Action Recognition datasets: HMDB51 and UCF101.
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Phase-based Motion Prediction in Static
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One Step Long Term

Experimental Setup:
I Compare against optical-flow motion prediction [Walke, ICCV, 2015].
I Motion prediction datasets: HMDB51 and UCF101.
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Phase-based Motion Transfer in Static

Given an input static image transfer the style of a video motion.

Static Video Transferred
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Phase-based Motion Transfer

In static:
I Correctly aligning the parts of the objects that have similar motion is

essential for the motion transfer task.
I We propose to add a wight pixels-wise correlation to the "style loss" of [Gatys

et. al., 2015].

In video:
I Follow [Ruder et. al., 2016] and add a temporal constrain between the

transferred frame phases.
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Conclusions

I We propose an Eulerian — phase-based — approach to motion
representation learning.

I We argue for the intrinsic stability of the phase-based motion description.

I We explore a set of motion learning tasks in an Eulerian setting:

I (a) action recognition,
I (b) motion prediction in static images,
I (c) motion transfer from a video to a static image and
I (d) motion transfer in videos.

And we propose a phase-based approach.

I We provide a small proof of concept.
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Thank you

?
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