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Eu]erian Versus Lagrangian MOﬁOﬂ

Optical Flow

Input Video Frames \

Lagrangian motion (optical flow) estimates the changes in position over time
— match points/patches.

Eulerian approac]ﬁ (p]ﬁase variations over time) flux statistics over time

— number of measurements stays constant.

2/13



Gains of Eulerian Motion

> No feature extraction and matching of patches between frames.

> No missing correspondences, rotating objects, occlusion.

Optical Flow
Matching

We focus on phase-based motion [Wadhwa et. al., SIGGRAPH, 2013].
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Gains of Eulerian Motion

No feature extraction and matching of patches between frames.

No missing correspondences, rotating objects, occlusion.

Optical Flow i
Matching

Constant number of measurements over time.

Phase information is innate to the image.

We focus on phase-based motion [Wadhwa et. al., SIGGRAPH, 2013].
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Phase-based Motion
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[Fleet et. al., JCV, 1990] show that the tempora] gradient of the phase over a
spaﬁa"y band-passed video over time directly relates to the motion field.
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Phase-based Motion

> Local motion <+ local edges with different orientations.

> Using a steerable pyramid [Simoncelli, Trans. on Info. Theory, 1992] we
decompose the image into localized subbands.

» The local-phase variations over time, give the local motion.
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Phase-based Motion

> Local motion <+ local edges with different orientations.

> Using a steerable pyramid [Simoncelli, Trans. on Info. Theory, 1992] we
decompose the image into localized subbands.

» The local-phase variations over time, give the local motion.
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4 Phase App]icafions

. Action Recognition
— Starting point: Two stream network [Simonyan et. al., CVPR, 2014].

. Motion Prediction in Static Images
— Starting point: RCNNs [Liang et. al., CVPR 2015], [Pinheiro et.al., ICML
2014].

. *Motion Transfer in Static Images
— Starting point: Artistic style transfer [Gatys et. al., 2015].

. *Motion Transfer in Videos

— Starting point: Artistic style transfer in videos [Ruder et. al., 2016]
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4 Phase App]ications

> Convolve the input frame/image with the steerable complex filters.

Complex Steerable Pyramid

7113



4 Phase App]icafions

» Get oriented amplitude and phase at different scales.

Complex Steerable Pyramid

Amplitude  Input Phase
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4 Phase App]ications

> Add the image appearance info into a deep net formulation.
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Phase-based Action Recognition

Orientation

Channels

Phase Scales & Orientations

Phase Deep
Input Phase Convolutional Stream

RGB Deep Convolutional Stream

Experimental Setup:
> Compare against [Simonyan et. al., CVPR, 2014].
> Action Recognition datasets: HMDB5I and UCFI01.
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Phase-based Motion Prediction in Static

Complex Steerable Pyramid
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One Step

Experimental Setup:
» Compare against optical-flow motion prediction [Walke, ICCV, 2015].
» Motion prediction datasets: HMDB51 and UCF101.
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Phase-based Motion Transfer in Static

Given an input static image transfer the style of a video motion.

Vic]eo Trans{'verred
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Phase-based Motion Transfer

In static:

» Correctly aligning the parts of the objects that have similar motion is
essential for the motion transfer task.

> We propose to add a wight pixels-wise correlation to the "style loss" of [Gatys
et. al., 2015].

In video:

> TFollow [Ruder et. a]., 2016] and add a tempora| constrain between the
transferred frame phases.
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Conclusions

We propose an Eulerian — phase-based — approach to motion
representation learning.

We argue for the intrinsic stability of the phase-based motion description.

We explore a set of motion learning tasks in an Eulerian setting:
» (a) action recognition,
» (b) motion prediction in static images,
» (c) motion transfer from a video to a static image and
» (d) motion transfer in videos.

And we propose a phase-based approach.

We provide a small proof of concept.
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